Combinatorial optimization solving by coherent Ising machines based on
spiking neural networks
- URL: http://arxiv.org/abs/2208.07502v2
- Date: Fri, 20 Oct 2023 13:52:51 GMT
- Title: Combinatorial optimization solving by coherent Ising machines based on
spiking neural networks
- Authors: Bo Lu, Yong-Pan Gao, Kai Wen, Chuan Wang
- Abstract summary: Spiking neural network is a neuromorphic computing that is believed to improve the level of intelligence and provide advantages for quantum computing.
In this work, we design an optical spiking neural network and find that it can be used to accelerate the speed of parametric equations.
- Score: 8.533799783981525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking neural network is a kind of neuromorphic computing that is believed
to improve the level of intelligence and provide advantages for quantum
computing. In this work, we address this issue by designing an optical spiking
neural network and find that it can be used to accelerate the speed of
computation, especially on combinatorial optimization problems. Here the
spiking neural network is constructed by the antisymmetrically coupled
degenerate optical parametric oscillator pulses and dissipative pulses. A
nonlinear transfer function is chosen to mitigate amplitude inhomogeneities and
destabilize the resulting local minima according to the dynamical behavior of
spiking neurons. It is numerically shown that the spiking neural
network-coherent Ising machines have excellent performance on combinatorial
optimization problems, which is expected to offer new applications for neural
computing and optical computing.
Related papers
- Adaptively Pruned Spiking Neural Networks for Energy-Efficient Intracortical Neural Decoding [0.06181089784338582]
Spiking Neural Networks (SNNs) on neuromorphic hardware have demonstrated remarkable efficiency in neural decoding.
We introduce a novel adaptive pruning algorithm specifically designed for SNNs with high activation sparsity, targeting intracortical neural decoding.
arXiv Detail & Related papers (2025-04-15T19:16:34Z) - Training Hybrid Neural Networks with Multimode Optical Nonlinearities Using Digital Twins [2.8479179029634984]
We introduce ultrashort pulse propagation in multimode fibers, which perform large-scale nonlinear transformations.
Training the hybrid architecture is achieved through a neural model that differentiably approximates the optical system.
Our experimental results achieve state-of-the-art image classification accuracies and simulation fidelity.
arXiv Detail & Related papers (2025-01-14T10:35:18Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Time-independent Spiking Neuron via Membrane Potential Estimation for Efficient Spiking Neural Networks [4.142699381024752]
computational inefficiency of spiking neural networks (SNNs) is primarily due to the sequential updates of membrane potential.
We propose Membrane Potential Estimation Parallel Spiking Neurons (MPE-PSN), a parallel computation method for spiking neurons.
Our approach exhibits promise for enhancing computational efficiency, particularly under conditions of elevated neuron density.
arXiv Detail & Related papers (2024-09-08T05:14:22Z) - Stepwise Weighted Spike Coding for Deep Spiking Neural Networks [7.524721345903027]
Spiking Neural Networks (SNNs) seek to mimic the spiking behavior of biological neurons.
We propose a novel Stepwise Weighted Spike (SWS) coding scheme to enhance the encoding of information in spikes.
This approach compresses the spikes by weighting the significance of the spike in each step of neural computation, achieving high performance and low energy consumption.
arXiv Detail & Related papers (2024-08-30T12:39:25Z) - Advancing Spatio-Temporal Processing in Spiking Neural Networks through Adaptation [6.233189707488025]
neural networks on neuromorphic hardware promise orders of less power consumption than their non-spiking counterparts.
Standard neuron model for spike-based computation on such systems has long been the integrate-and-fire (LIF) neuron.
The root of these so-called adaptive LIF neurons is not well understood.
arXiv Detail & Related papers (2024-08-14T12:49:58Z) - Topology Optimization of Random Memristors for Input-Aware Dynamic SNN [44.38472635536787]
We introduce pruning optimization for input-aware dynamic memristive spiking neural network (PRIME)
Signal representation-wise, PRIME employs leaky integrate-and-fire neurons to emulate the brain's inherent spiking mechanism.
For reconfigurability, inspired by the brain's dynamic adjustment of computational depth, PRIME employs an input-aware dynamic early stop policy.
arXiv Detail & Related papers (2024-07-26T09:35:02Z) - Expressivity of Neural Networks with Random Weights and Learned Biases [44.02417750529102]
Recent work has pushed the bounds of universal approximation by showing that arbitrary functions can similarly be learned by tuning smaller subsets of parameters.
We provide theoretical and numerical evidence demonstrating that feedforward neural networks with fixed random weights can be trained to perform multiple tasks by learning biases only.
Our results are relevant to neuroscience, where they demonstrate the potential for behaviourally relevant changes in dynamics without modifying synaptic weights.
arXiv Detail & Related papers (2024-07-01T04:25:49Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Neuromorphic Auditory Perception by Neural Spiketrum [27.871072042280712]
We introduce a neural spike coding model called spiketrumtemporal, to transform the time-varying analog signals into efficient spike patterns.
The model provides a sparse and efficient coding scheme with precisely controllable spike rate that facilitates training of spiking neural networks in various auditory perception tasks.
arXiv Detail & Related papers (2023-09-11T13:06:19Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
Layer-wise Feedback feedback (LFP) is a novel training principle for neural network-like predictors.<n>LFP decomposes a reward to individual neurons based on their respective contributions.<n>Our method then implements a greedy reinforcing approach helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - Correlative Information Maximization: A Biologically Plausible Approach
to Supervised Deep Neural Networks without Weight Symmetry [43.584567991256925]
We propose a new normative approach to describe the signal propagation in biological neural networks in both forward and backward directions.
This framework addresses many concerns about the biological-plausibility of conventional artificial neural networks and the backpropagation algorithm.
Our approach provides a natural resolution to the weight symmetry problem between forward and backward signal propagation paths.
arXiv Detail & Related papers (2023-06-07T22:14:33Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Ultra-Low-Power FDSOI Neural Circuits for Extreme-Edge Neuromorphic
Intelligence [2.6199663901387997]
In-memory computing mixed-signal neuromorphic architectures provide promising ultra-low-power solutions for edge-computing sensory-processing applications.
We present a set of mixed-signal analog/digital circuits that exploit the features of advanced Fully-Depleted Silicon on Insulator (FDSOI) integration processes.
arXiv Detail & Related papers (2020-06-25T09:31:29Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
We present a strategy to achieve structural plasticity by constantly rewiring the pre- and gpostsynaptic partners.
We implemented this algorithm on the analog neuromorphic system BrainScaleS-2.
We evaluated our implementation in a simple supervised learning scenario, showing its ability to optimize the network topology.
arXiv Detail & Related papers (2019-12-27T10:15:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.