論文の概要: Learning Efficient Abstract Planning Models that Choose What to Predict
- arxiv url: http://arxiv.org/abs/2208.07737v3
- Date: Tue, 5 Sep 2023 16:22:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 11:14:40.699953
- Title: Learning Efficient Abstract Planning Models that Choose What to Predict
- Title(参考訳): 予測するものを選択する効率的な抽象的計画モデルを学ぶ
- Authors: Nishanth Kumar, Willie McClinton, Rohan Chitnis, Tom Silver, Tom\'as
Lozano-P\'erez, Leslie Pack Kaelbling
- Abstract要約: 多くのロボティクス分野において,既存の記号演算子学習アプローチが不足していることが示されている。
これは主に、抽象状態におけるすべての観測された変化を正確に予測する演算子を学習しようとするためである。
我々は,特定の目標を達成するための抽象的計画に必要な変化をモデル化するだけで,「予測すべきものを選択する」演算子を学習することを提案する。
- 参考スコア(独自算出の注目度): 28.013014215441505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An effective approach to solving long-horizon tasks in robotics domains with
continuous state and action spaces is bilevel planning, wherein a high-level
search over an abstraction of an environment is used to guide low-level
decision-making. Recent work has shown how to enable such bilevel planning by
learning abstract models in the form of symbolic operators and neural samplers.
In this work, we show that existing symbolic operator learning approaches fall
short in many robotics domains where a robot's actions tend to cause a large
number of irrelevant changes in the abstract state. This is primarily because
they attempt to learn operators that exactly predict all observed changes in
the abstract state. To overcome this issue, we propose to learn operators that
'choose what to predict' by only modelling changes necessary for abstract
planning to achieve specified goals. Experimentally, we show that our approach
learns operators that lead to efficient planning across 10 different hybrid
robotics domains, including 4 from the challenging BEHAVIOR-100 benchmark,
while generalizing to novel initial states, goals, and objects.
- Abstract(参考訳): ロボット領域における長期的タスクを連続状態と行動空間で解決するための効果的なアプローチは、環境の抽象化をハイレベルに探索することで、低レベルな意思決定をガイドする二段階計画である。
近年の研究では、記号演算子とニューラルサンプリング器の形式で抽象モデルを学ぶことによって、このような二段階計画を実現する方法が示されている。
本研究では,ロボットの動作が抽象状態の無関係な変化を引き起こす傾向がある多くのロボット領域において,既存の記号操作学習手法が不足していることを示す。
これは主に、観測されたすべての抽象状態の変化を正確に予測する演算子を学習しようとするためである。
この問題を克服するために,抽象計画に必要な変化をモデル化し,特定の目標を達成するためにのみ「予測すべきものを選ぶ」演算子を提案する。
実験により,提案手法は,新たな初期状態,目標,対象に一般化しつつ,挑戦的行動-100ベンチマークから4つを含む,10種類のハイブリッドロボットドメインの効率的な計画に導くオペレーターを学習することを示した。
関連論文リスト
- VisualPredicator: Learning Abstract World Models with Neuro-Symbolic Predicates for Robot Planning [86.59849798539312]
本稿では,記号的・神経的知識表現の強みを組み合わせた一階抽象言語Neuro-Symbolic Predicatesを提案する。
提案手法は, サンプルの複雑さの向上, 分布外一般化の強化, 解釈可能性の向上を実現する。
論文 参考訳(メタデータ) (2024-10-30T16:11:05Z) - Learning Abstract World Model for Value-preserving Planning with Options [11.254212901595523]
所与の時間的拡張行動の構造を利用して抽象マルコフ決定過程(MDP)を学習する。
我々は、これらのスキルによる計画が、抽象MDPにおける軌跡をシミュレートすることによって、元のMDPにおける有界値損失のポリシーをもたらすことを確実にするために必要な状態抽象化を特徴付ける。
目標をベースとしたナビゲーション環境では,連続的な抽象状態の計画が成功し,抽象モデル学習が計画と学習のサンプル効率を向上させることを示す。
論文 参考訳(メタデータ) (2024-06-22T13:41:02Z) - From Reals to Logic and Back: Inventing Symbolic Vocabularies, Actions,
and Models for Planning from Raw Data [20.01856556195228]
本稿では,抽象状態と行動に対する論理に基づく関係表現を自律的に学習する最初の手法を提案する。
学習された表現は自動発明されたPDDLのようなドメインモデルを構成する。
決定論的設定における実証的な結果は、少数のロボット軌道から強力な抽象表現を学ぶことができることを示している。
論文 参考訳(メタデータ) (2024-02-19T06:28:21Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - Hierarchical Imitation Learning with Vector Quantized Models [77.67190661002691]
我々は,専門家の軌跡におけるサブゴールの同定に強化学習を用いることを提案する。
同定されたサブゴールに対するベクトル量子化生成モデルを構築し,サブゴールレベルの計画を行う。
実験では、このアルゴリズムは複雑な長い水平決定問題の解法に優れ、最先端のアルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2023-01-30T15:04:39Z) - Learning Neuro-Symbolic Skills for Bilevel Planning [63.388694268198655]
意思決定は、連続したオブジェクト中心の状態、継続的なアクション、長い地平線、まばらなフィードバックを持つロボット環境では難しい。
タスク・アンド・モーション・プランニング(TAMP)のような階層的なアプローチは、意思決定を2つ以上の抽象レベルに分解することでこれらの課題に対処する。
我々の主な貢献は、オペレーターとサンプルラーを組み合わせたパラメータ化警察の学習方法である。
論文 参考訳(メタデータ) (2022-06-21T19:01:19Z) - Inventing Relational State and Action Abstractions for Effective and
Efficient Bilevel Planning [26.715198108255162]
我々は状態と行動の抽象化を学習するための新しいフレームワークを開発する。
我々は、対象のアイデンティティや数値を一般化するリレーショナル、ニューロシンボリックな抽象化を学ぶ。
学習した抽象化によって、より長い地平線のホールドアウトタスクを迅速に解決できることが示されています。
論文 参考訳(メタデータ) (2022-03-17T22:13:09Z) - Using Deep Learning to Bootstrap Abstractions for Hierarchical Robot
Planning [27.384742641275228]
階層的な計画プロセス全体をブートストラップするための新しいアプローチを提案する。
これは、新しい環境に対する抽象状態とアクションが自動的に計算される方法を示している。
学習した抽象概念を、新しいマルチソース双方向階層型ロボット計画アルゴリズムに用いている。
論文 参考訳(メタデータ) (2022-02-02T08:11:20Z) - Procedure Planning in Instructional Videosvia Contextual Modeling and
Model-based Policy Learning [114.1830997893756]
本研究は,実生活ビデオにおける目標指向アクションを計画するモデルを学習することに焦点を当てる。
本研究では,ベイズ推論とモデルに基づく模倣学習を通して,人間の行動のモデル化を行う新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-10-05T01:06:53Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z) - Transferable Task Execution from Pixels through Deep Planning Domain
Learning [46.88867228115775]
階層モデルを学ぶために,DPDL(Deep Planning Domain Learning)を提案する。
DPDLは、現在の象徴的世界状態からなる論理述語セットの値を予測する高レベルモデルを学ぶ。
これにより、ロボットが明示的に訓練されていなくても、複雑なマルチステップタスクを実行できます。
論文 参考訳(メタデータ) (2020-03-08T05:51:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。