論文の概要: Transferable Task Execution from Pixels through Deep Planning Domain
Learning
- arxiv url: http://arxiv.org/abs/2003.03726v1
- Date: Sun, 8 Mar 2020 05:51:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-25 14:43:06.842464
- Title: Transferable Task Execution from Pixels through Deep Planning Domain
Learning
- Title(参考訳): ディーププランニングドメイン学習によるピクセルからの転送可能なタスク実行
- Authors: Kei Kase, Chris Paxton, Hammad Mazhar, Tetsuya Ogata, Dieter Fox
- Abstract要約: 階層モデルを学ぶために,DPDL(Deep Planning Domain Learning)を提案する。
DPDLは、現在の象徴的世界状態からなる論理述語セットの値を予測する高レベルモデルを学ぶ。
これにより、ロボットが明示的に訓練されていなくても、複雑なマルチステップタスクを実行できます。
- 参考スコア(独自算出の注目度): 46.88867228115775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While robots can learn models to solve many manipulation tasks from raw
visual input, they cannot usually use these models to solve new problems. On
the other hand, symbolic planning methods such as STRIPS have long been able to
solve new problems given only a domain definition and a symbolic goal, but
these approaches often struggle on the real world robotic tasks due to the
challenges of grounding these symbols from sensor data in a
partially-observable world. We propose Deep Planning Domain Learning (DPDL), an
approach that combines the strengths of both methods to learn a hierarchical
model. DPDL learns a high-level model which predicts values for a large set of
logical predicates consisting of the current symbolic world state, and
separately learns a low-level policy which translates symbolic operators into
executable actions on the robot. This allows us to perform complex, multi-step
tasks even when the robot has not been explicitly trained on them. We show our
method on manipulation tasks in a photorealistic kitchen scenario.
- Abstract(参考訳): ロボットは生の視覚入力から多くの操作タスクを解くためにモデルを学ぶことができるが、これらのモデルを使って新しい問題を解決することはできない。
一方、ストリップのようなシンボリックプランニング手法は、ドメイン定義とシンボリック目標のみを考慮すれば、これまでも新たな問題を解決することができたが、これらのアプローチは、部分的に観察可能な世界のセンサデータからシンボルを接地することの難しさから、現実世界のロボットタスクでしばしば苦労する。
本稿では,2つの手法の強みを組み合わせた階層モデル学習手法であるdeep planning domain learning (dpdl)を提案する。
DPDLは、現在の象徴的世界状態からなる論理述語集合の値を予測する高レベルモデルを学び、シンボル的演算子をロボット上で実行可能な動作に変換する低レベルポリシーを別々に学習する。
これにより、ロボットが明示的に訓練されていなくても、複雑なマルチステップタスクを実行できる。
我々は,フォトリアリスティックなキッチンシナリオで操作タスクを行う方法を示す。
関連論文リスト
- MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
大規模言語モデル(LLM)は、ロボティクスの操作やナビゲーションなど、さまざまな領域にまたがる優れた計画能力を示している。
特殊なLLMエージェント間で高レベル計画および低レベル制御コード生成を分散する新しいマルチエージェントLLMフレームワークを提案する。
長軸タスクを含む9つのRLBenchタスクに対するアプローチを評価し、ゼロショット環境でロボット操作を解く能力を実証した。
論文 参考訳(メタデータ) (2024-11-26T17:53:44Z) - $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
本稿では,インターネット規模のセマンティック知識を継承するために,事前学習された視覚言語モデル(VLM)上に構築された新しいフローマッチングアーキテクチャを提案する。
我々は,事前訓練後のタスクをゼロショットで実行し,人からの言語指導に追従し,微調整で新たなスキルを習得する能力の観点から,我々のモデルを評価した。
論文 参考訳(メタデータ) (2024-10-31T17:22:30Z) - Solving Robotics Problems in Zero-Shot with Vision-Language Models [0.0]
ゼロショット方式でロボットの問題を解くために設計された多エージェント視覚大言語モデル(VLLM)フレームワークであるWonderful Teamを紹介した。
我々の文脈では、ゼロショットは、新しい環境において、ロボットの周囲のイメージとタスク記述を備えたVLLMを提供することを意味する。
私たちのシステムは、操作、ゴールリーチ、視覚的推論といった多様なタスクを、すべてゼロショットで処理できる能力を示しています。
論文 参考訳(メタデータ) (2024-07-26T21:18:57Z) - Grounding Language Plans in Demonstrations Through Counterfactual Perturbations [25.19071357445557]
物理領域におけるLarge Language Models(LLM)の常識的推論は、具体化されたAIにとって重要な問題でありながら未解決である。
提案手法は,2次元ナビゲーションによる模倣学習の解釈性と反応性を向上し,シミュレーションおよび実ロボット操作タスクを実現する。
論文 参考訳(メタデータ) (2024-03-25T19:04:59Z) - From Reals to Logic and Back: Inventing Symbolic Vocabularies, Actions,
and Models for Planning from Raw Data [20.01856556195228]
本稿では,抽象状態と行動に対する論理に基づく関係表現を自律的に学習する最初の手法を提案する。
学習された表現は自動発明されたPDDLのようなドメインモデルを構成する。
決定論的設定における実証的な結果は、少数のロボット軌道から強力な抽象表現を学ぶことができることを示している。
論文 参考訳(メタデータ) (2024-02-19T06:28:21Z) - Learning Efficient Abstract Planning Models that Choose What to Predict [28.013014215441505]
多くのロボティクス分野において,既存の記号演算子学習アプローチが不足していることが示されている。
これは主に、抽象状態におけるすべての観測された変化を正確に予測する演算子を学習しようとするためである。
我々は,特定の目標を達成するための抽象的計画に必要な変化をモデル化するだけで,「予測すべきものを選択する」演算子を学習することを提案する。
論文 参考訳(メタデータ) (2022-08-16T13:12:59Z) - Learning Neuro-Symbolic Skills for Bilevel Planning [63.388694268198655]
意思決定は、連続したオブジェクト中心の状態、継続的なアクション、長い地平線、まばらなフィードバックを持つロボット環境では難しい。
タスク・アンド・モーション・プランニング(TAMP)のような階層的なアプローチは、意思決定を2つ以上の抽象レベルに分解することでこれらの課題に対処する。
我々の主な貢献は、オペレーターとサンプルラーを組み合わせたパラメータ化警察の学習方法である。
論文 参考訳(メタデータ) (2022-06-21T19:01:19Z) - Learning Neuro-Symbolic Relational Transition Models for Bilevel
Planning [61.37385221479233]
本研究では,モデルに基づく強化学習と記号幾何学的ロボット計画の統合のギャップを埋めるための一歩を踏み出した。
NSRTはシンボリックコンポーネントとニューラルコンポーネントの両方を持ち、外ループにおけるシンボリックAI計画がインナーループ内のニューラルモデルによる継続的な計画をガイドするバイレベルプランニングスキームを可能にする。
NSRTは、ほんの数十~数百回のトレーニングの後に学習でき、目標を達成するのに最大60のアクションを必要とする新しいタスクの高速計画に使用される。
論文 参考訳(メタデータ) (2021-05-28T19:37:18Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
強化学習手法は、重要な性能を達成できるが、同じロボットプラットフォームで収集される大量のトレーニングデータを必要とする。
私たちはそれを、さまざまなロボットプラットフォームで共有される共通の構造を捉えるモデルを見つけることを目標とする、数ショットのメタラーニング問題として定式化します。
我々は,400個のロボットを用いて,実ロボットピッキング作業とシミュレーションリーチの枠組みを実験的に評価した。
論文 参考訳(メタデータ) (2021-03-05T14:16:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。