FedPerm: Private and Robust Federated Learning by Parameter Permutation
- URL: http://arxiv.org/abs/2208.07922v1
- Date: Tue, 16 Aug 2022 19:40:28 GMT
- Title: FedPerm: Private and Robust Federated Learning by Parameter Permutation
- Authors: Hamid Mozaffari, Virendra J. Marathe, Dave Dice
- Abstract summary: Federated Learning (FL) is a distributed learning paradigm that enables mutually untrusting clients to collaboratively train a common machine learning model.
Client data privacy is paramount in FL. At the same time, the model must be protected from poisoning attacks from adversarial clients.
We present FedPerm, a new FL algorithm that addresses both these problems by combining a novel intra-model parameter shuffling technique that amplifies data privacy, with Private Information Retrieval (PIR) based techniques that permit cryptographic aggregation of clients' model updates.
- Score: 2.406359246841227
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Federated Learning (FL) is a distributed learning paradigm that enables
mutually untrusting clients to collaboratively train a common machine learning
model. Client data privacy is paramount in FL. At the same time, the model must
be protected from poisoning attacks from adversarial clients. Existing
solutions address these two problems in isolation. We present FedPerm, a new FL
algorithm that addresses both these problems by combining a novel intra-model
parameter shuffling technique that amplifies data privacy, with Private
Information Retrieval (PIR) based techniques that permit cryptographic
aggregation of clients' model updates. The combination of these techniques
further helps the federation server constrain parameter updates from clients so
as to curtail effects of model poisoning attacks by adversarial clients. We
further present FedPerm's unique hyperparameters that can be used effectively
to trade off computation overheads with model utility. Our empirical evaluation
on the MNIST dataset demonstrates FedPerm's effectiveness over existing
Differential Privacy (DP) enforcement solutions in FL.
Related papers
- Protection against Source Inference Attacks in Federated Learning using Unary Encoding and Shuffling [6.260747047974035]
Federated Learning (FL) enables clients to train a joint model without disclosing their local data.
Recently, the source inference attack (SIA) has been proposed where an honest-but-curious central server tries to identify exactly which client owns a specific data record.
We propose a defense against SIAs by using a trusted shuffler, without compromising the accuracy of the joint model.
arXiv Detail & Related papers (2024-11-10T13:17:11Z) - Formal Logic-guided Robust Federated Learning against Poisoning Attacks [6.997975378492098]
Federated Learning (FL) offers a promising solution to the privacy concerns associated with centralized Machine Learning (ML)
FL is vulnerable to various security threats, including poisoning attacks, where adversarial clients manipulate the training data or model updates to degrade overall model performance.
We present a defense mechanism designed to mitigate poisoning attacks in federated learning for time-series tasks.
arXiv Detail & Related papers (2024-11-05T16:23:19Z) - ACCESS-FL: Agile Communication and Computation for Efficient Secure Aggregation in Stable Federated Learning Networks [26.002975401820887]
Federated Learning (FL) is a distributed learning framework designed for privacy-aware applications.
Traditional FL approaches risk exposing sensitive client data when plain model updates are transmitted to the server.
Google's Secure Aggregation (SecAgg) protocol addresses this threat by employing a double-masking technique.
We propose ACCESS-FL, a communication-and-computation-efficient secure aggregation method.
arXiv Detail & Related papers (2024-09-03T09:03:38Z) - Mitigating Cross-client GANs-based Attack in Federated Learning [78.06700142712353]
Multi distributed multimedia clients can resort to federated learning (FL) to jointly learn a global shared model.
FL suffers from the cross-client generative adversarial networks (GANs)-based (C-GANs) attack.
We propose Fed-EDKD technique to improve the current popular FL schemes to resist C-GANs attack.
arXiv Detail & Related papers (2023-07-25T08:15:55Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Robust Quantity-Aware Aggregation for Federated Learning [72.59915691824624]
Malicious clients can poison model updates and claim large quantities to amplify the impact of their model updates in the model aggregation.
Existing defense methods for FL, while all handling malicious model updates, either treat all quantities benign or simply ignore/truncate the quantities of all clients.
We propose a robust quantity-aware aggregation algorithm for federated learning, called FedRA, to perform the aggregation with awareness of local data quantities.
arXiv Detail & Related papers (2022-05-22T15:13:23Z) - Stochastic Coded Federated Learning with Convergence and Privacy
Guarantees [8.2189389638822]
Federated learning (FL) has attracted much attention as a privacy-preserving distributed machine learning framework.
This paper proposes a coded federated learning framework, namely coded federated learning (SCFL) to mitigate the straggler issue.
We characterize the privacy guarantee by the mutual information differential privacy (MI-DP) and analyze the convergence performance in federated learning.
arXiv Detail & Related papers (2022-01-25T04:43:29Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
We propose a novel framework by integrating blockchain into Federated Learning (FL)
BLADE-FL has a good performance in terms of privacy preservation, tamper resistance, and effective cooperation of learning.
It gives rise to a new problem of training deficiency, caused by lazy clients who plagiarize others' trained models and add artificial noises to conceal their cheating behaviors.
arXiv Detail & Related papers (2020-12-02T12:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.