Generative Thermal Design Through Boundary Representation and
Multi-Agent Cooperative Environment
- URL: http://arxiv.org/abs/2208.07952v1
- Date: Tue, 16 Aug 2022 21:22:44 GMT
- Title: Generative Thermal Design Through Boundary Representation and
Multi-Agent Cooperative Environment
- Authors: Hadi Keramati and Feridun Hamdullahpur
- Abstract summary: We present a generative thermal design using cooperative multi-agent deep reinforcement learning and continuous geometric representation.
The proposed framework consists of a pre-trained neural network surrogate model as an environment to predict heat transfer and pressure drop.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative design has been growing across the design community as a viable
method for design space exploration. Thermal design is more complex than
mechanical or aerodynamic design because of the additional convection-diffusion
equation and its pertinent boundary interaction. We present a generative
thermal design using cooperative multi-agent deep reinforcement learning and
continuous geometric representation of the fluid and solid domain. The proposed
framework consists of a pre-trained neural network surrogate model as an
environment to predict heat transfer and pressure drop of the generated
geometries. The design space is parameterized by composite Bezier curve to
solve multiple fin shape optimization. We show that our multi-agent framework
can learn the policy for design strategy using multi-objective reward without
the need for shape derivation or differentiable objective function.
Related papers
- Machine Learning-Accelerated Multi-Objective Design of Fractured Geothermal Systems [17.040963667188525]
We report an Active Learning enhanced Evolutionary Multi-objective Optimization algorithm, integrated with hydrothermal simulations in fractured media.
Results demonstrate that the ALEMO approach achieves a remarkable reduction in required simulations, with a speed-up of 1-2 orders of magnitude (10-100 times faster) than traditional evolutionary methods.
arXiv Detail & Related papers (2024-11-01T10:39:23Z) - Geometric Trajectory Diffusion Models [58.853975433383326]
Generative models have shown great promise in generating 3D geometric systems.
Existing approaches only operate on static structures, neglecting the fact that physical systems are always dynamic in nature.
We propose geometric trajectory diffusion models (GeoTDM), the first diffusion model for modeling the temporal distribution of 3D geometric trajectories.
arXiv Detail & Related papers (2024-10-16T20:36:41Z) - Generative Aerodynamic Design with Diffusion Probabilistic Models [0.7373617024876725]
We show that generative models have the potential to provide geometries by generalizing geometries over a large dataset of simulations.
In particular, we leverage diffusion probabilistic models trained on XFOIL simulations to synthesize two-dimensional airfoil geometries conditioned on given aerodynamic features and constraints.
We show that the models are able to generate diverse candidate designs for identical requirements and constraints, effectively exploring the design space to provide multiple starting points to optimization procedures.
arXiv Detail & Related papers (2024-09-20T08:38:36Z) - Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
We focus on diffusion models, a powerful generative AI technology, and investigate their potential for black-box optimization.
We study two practical types of labels: 1) noisy measurements of a real-valued reward function and 2) human preference based on pairwise comparisons.
Our proposed method reformulates the design optimization problem into a conditional sampling problem, which allows us to leverage the power of diffusion models.
arXiv Detail & Related papers (2024-03-20T00:41:12Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - Multi-fidelity Design of Porous Microstructures for Thermofluidic
Applications [0.5249805590164902]
Two-phase cooling methods enhanced by porous surfaces are emerging as potential solutions.
In such porous structures, the optimum heat dissipation capacity relies on two competing objectives.
We develop a data-driven framework for designing optimal porous microstructures for cooling applications.
arXiv Detail & Related papers (2023-10-27T21:51:11Z) - Latent Diffusion Models for Structural Component Design [11.342098118480802]
This paper proposes a framework for the generative design of structural components.
We employ a Latent Diffusion model to generate potential designs of a component that can satisfy a set of problem-specific loading conditions.
arXiv Detail & Related papers (2023-09-20T19:28:45Z) - A Pareto-optimal compositional energy-based model for sampling and
optimization of protein sequences [55.25331349436895]
Deep generative models have emerged as a popular machine learning-based approach for inverse problems in the life sciences.
These problems often require sampling new designs that satisfy multiple properties of interest in addition to learning the data distribution.
arXiv Detail & Related papers (2022-10-19T19:04:45Z) - Inverse design of photonic devices with strict foundry fabrication
constraints [55.41644538483948]
We introduce a new method for inverse design of nanophotonic devices which guarantees that designs satisfy strict length scale constraints.
We demonstrate the performance and reliability of our method by designing several common integrated photonic components.
arXiv Detail & Related papers (2022-01-31T02:27:25Z) - Dynamically Grown Generative Adversarial Networks [111.43128389995341]
We propose a method to dynamically grow a GAN during training, optimizing the network architecture and its parameters together with automation.
The method embeds architecture search techniques as an interleaving step with gradient-based training to periodically seek the optimal architecture-growing strategy for the generator and discriminator.
arXiv Detail & Related papers (2021-06-16T01:25:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.