Machine Learning-Accelerated Multi-Objective Design of Fractured Geothermal Systems
- URL: http://arxiv.org/abs/2411.00504v1
- Date: Fri, 01 Nov 2024 10:39:23 GMT
- Title: Machine Learning-Accelerated Multi-Objective Design of Fractured Geothermal Systems
- Authors: Guodong Chen, Jiu Jimmy Jiao, Qiqi Liu, Zhongzheng Wang, Yaochu Jin,
- Abstract summary: We report an Active Learning enhanced Evolutionary Multi-objective Optimization algorithm, integrated with hydrothermal simulations in fractured media.
Results demonstrate that the ALEMO approach achieves a remarkable reduction in required simulations, with a speed-up of 1-2 orders of magnitude (10-100 times faster) than traditional evolutionary methods.
- Score: 17.040963667188525
- License:
- Abstract: Multi-objective optimization has burgeoned as a potent methodology for informed decision-making in enhanced geothermal systems, aiming to concurrently maximize economic yield, ensure enduring geothermal energy provision, and curtail carbon emissions. However, addressing a multitude of design parameters inherent in computationally intensive physics-driven simulations constitutes a formidable impediment for geothermal design optimization, as well as across a broad range of scientific and engineering domains. Here we report an Active Learning enhanced Evolutionary Multi-objective Optimization algorithm, integrated with hydrothermal simulations in fractured media, to enable efficient optimization of fractured geothermal systems using few model evaluations. We introduce probabilistic neural network as classifier to learns to predict the Pareto dominance relationship between candidate samples and reference samples, thereby facilitating the identification of promising but uncertain offspring solutions. We then use active learning strategy to conduct hypervolume based attention subspace search with surrogate model by iteratively infilling informative samples within local promising parameter subspace. We demonstrate its effectiveness by conducting extensive experimental tests of the integrated framework, including multi-objective benchmark functions, a fractured geothermal model and a large-scale enhanced geothermal system. Results demonstrate that the ALEMO approach achieves a remarkable reduction in required simulations, with a speed-up of 1-2 orders of magnitude (10-100 times faster) than traditional evolutionary methods, thereby enabling accelerated decision-making. Our method is poised to advance the state-of-the-art of renewable geothermal energy system and enable widespread application to accelerate the discovery of optimal designs for complex systems.
Related papers
- Accelerate Neural Subspace-Based Reduced-Order Solver of Deformable Simulation by Lipschitz Optimization [9.364019847856714]
Reduced-order simulation is an emerging method for accelerating physical simulations with high DOFs.
We propose a method for finding optimized subspace mappings, enabling further acceleration of neural reduced-order simulations.
We demonstrate the effectiveness of our approach through general cases in both quasi-static and dynamics simulations.
arXiv Detail & Related papers (2024-09-05T12:56:03Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
We focus on extending spatial aggregation capability and propose a dynamic kernel-based transform coding.
The proposed adaptive aggregation generates kernel offsets to capture valid information in the content-conditioned range to help transform.
Experimental results demonstrate that our method achieves superior rate-distortion performance on three benchmarks compared to the state-of-the-art learning-based methods.
arXiv Detail & Related papers (2023-08-17T01:34:51Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Surrogate-assisted level-based learning evolutionary search for heat
extraction optimization of enhanced geothermal system [3.012067935276772]
An enhanced geothermal system is essential to provide sustainable and long-term geothermal energy supplies and reduce carbon emissions.
New surrogate-assisted level-based learning evolutionary search algorithm (SLLES) is proposed for heat extraction optimization of enhanced geothermal system.
arXiv Detail & Related papers (2022-12-15T08:43:09Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
We present a novel method for guaranteeing linear momentum in learned physics simulations.
We enforce conservation of momentum with a hard constraint, which we realize via antisymmetrical continuous convolutional layers.
In combination, the proposed method allows us to increase the physical accuracy of the learned simulator substantially.
arXiv Detail & Related papers (2022-10-12T09:12:59Z) - Machine learning based surrogate models for microchannel heat sink
optimization [0.0]
In this paper, microchannel designs with secondary channels and with ribs are investigated using computational fluid dynamics.
A workflow that combines Latin hypercube sampling, machine learning-based surrogate modeling and multi-objective optimization is proposed.
arXiv Detail & Related papers (2022-08-20T13:49:11Z) - Deep learning based closed-loop optimization of geothermal reservoir
production [0.0]
We propose a closed-loop optimization framework, based on deep learning surrogates, for the well control optimization of geothermal reservoirs.
We construct a hybrid convolution-recurrent neural network surrogate, which combines the convolution neural network (CNN) and long short-term memory (LSTM) recurrent network.
We show that the proposed framework can achieve efficient and effective real-time optimization and data assimilation in the geothermal reservoir production process.
arXiv Detail & Related papers (2022-04-15T14:37:28Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Partitioned Active Learning for Heterogeneous Systems [5.331649110169476]
We propose the partitioned active learning strategy established upon partitioned GP (PGP) modeling.
Global searching scheme accelerates the exploration aspect of active learning.
Local searching exploits the active learning criterion induced by the local GP model.
arXiv Detail & Related papers (2021-05-14T02:05:31Z) - Localized active learning of Gaussian process state space models [63.97366815968177]
A globally accurate model is not required to achieve good performance in many common control applications.
We propose an active learning strategy for Gaussian process state space models that aims to obtain an accurate model on a bounded subset of the state-action space.
By employing model predictive control, the proposed technique integrates information collected during exploration and adaptively improves its exploration strategy.
arXiv Detail & Related papers (2020-05-04T05:35:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.