A Survey on Incomplete Multi-view Clustering
- URL: http://arxiv.org/abs/2208.08040v1
- Date: Wed, 17 Aug 2022 03:00:59 GMT
- Title: A Survey on Incomplete Multi-view Clustering
- Authors: Jie Wen, Zheng Zhang, Lunke Fei, Bob Zhang, Yong Xu, Zhao Zhang,
Jinxing Li
- Abstract summary: In practical applications, such as disease diagnosis, multimedia analysis, and recommendation system, not all views of samples are available in many cases.
Incomplete multi-view clustering is referred to as incomplete multi-view clustering.
- Score: 66.50475816827208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional multi-view clustering seeks to partition data into respective
groups based on the assumption that all views are fully observed. However, in
practical applications, such as disease diagnosis, multimedia analysis, and
recommendation system, it is common to observe that not all views of samples
are available in many cases, which leads to the failure of the conventional
multi-view clustering methods. Clustering on such incomplete multi-view data is
referred to as incomplete multi-view clustering. In view of the promising
application prospects, the research of incomplete multi-view clustering has
noticeable advances in recent years. However, there is no survey to summarize
the current progresses and point out the future research directions. To this
end, we review the recent studies of incomplete multi-view clustering.
Importantly, we provide some frameworks to unify the corresponding incomplete
multi-view clustering methods, and make an in-depth comparative analysis for
some representative methods from theoretical and experimental perspectives.
Finally, some open problems in the incomplete multi-view clustering field are
offered for researchers.
Related papers
- Multi-level Reliable Guidance for Unpaired Multi-view Clustering [7.441454668534061]
We propose a method called Multi-level Reliable Guidance for UMC (MRG-UMC)
MRG-UMC leverages multi-level clustering to aid in learning a trustworthy cluster structure across inner-view, cross-view, and common-view.
In cross-view learning, reliable view guidance enhances the confidence of the cluster structures in other views.
arXiv Detail & Related papers (2024-07-01T12:49:55Z) - CDIMC-net: Cognitive Deep Incomplete Multi-view Clustering Network [53.72046586512026]
We propose a novel incomplete multi-view clustering network, called Cognitive Deep Incomplete Multi-view Clustering Network (CDIMC-net)
It captures the high-level features and local structure of each view by incorporating the view-specific deep encoders and graph embedding strategy into a framework.
Based on the human cognition, i.e., learning from easy to hard, it introduces a self-paced strategy to select the most confident samples for model training.
arXiv Detail & Related papers (2024-03-28T15:45:03Z) - Incomplete Contrastive Multi-View Clustering with High-Confidence
Guiding [7.305817202715752]
We propose a novel Incomplete Contrastive Multi-View Clustering method with high-confidence guiding (ICMVC)
Firstly, we proposed a multi-view consistency relation transfer plus graph convolutional network to tackle missing values problem.
Secondly, instance-level attention fusion and high-confidence guiding are proposed to exploit the complementary information.
arXiv Detail & Related papers (2023-12-14T07:28:41Z) - Incomplete Multi-view Clustering via Diffusion Completion [0.0]
We propose diffusion completion to recover the missing views integrated into an incomplete multi-view clustering framework.
Based on the observable views information, the diffusion model is used to recover the missing views.
The proposed method performs well in recovering the missing views while achieving superior clustering performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-19T07:39:24Z) - GCFAgg: Global and Cross-view Feature Aggregation for Multi-view
Clustering [45.530950521907265]
Multi-view clustering can partition data samples into their categories by learning a consensus representation in unsupervised way.
We propose a novel multi-view clustering network to address these problems, called Global and Cross-view Feature aggregation for Multi-View Clustering (GggMVC)
We show that the proposed method achieves excellent performance in both complete multi-view data clustering tasks and incomplete multi-view data clustering tasks.
arXiv Detail & Related papers (2023-05-11T13:41:13Z) - Deep Incomplete Multi-view Clustering with Cross-view Partial Sample and
Prototype Alignment [50.82982601256481]
We propose a Cross-view Partial Sample and Prototype Alignment Network (CPSPAN) for Deep Incomplete Multi-view Clustering.
Unlike existing contrastive-based methods, we adopt pair-observed data alignment as 'proxy supervised signals' to guide instance-to-instance correspondence construction.
arXiv Detail & Related papers (2023-03-28T02:31:57Z) - Error-Robust Multi-View Clustering: Progress, Challenges and
Opportunities [67.54503077766171]
Since label information is often expensive to acquire, multi-view clustering has gained growing interest.
Error-robust multi-view clustering approaches with explicit error removal formulation can be structured into five broad research categories.
This survey summarizes and reviews recent advances in error-robust clustering for multi-view data.
arXiv Detail & Related papers (2021-05-07T04:03:02Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z) - Generative Partial Multi-View Clustering [133.36721417531734]
We propose a generative partial multi-view clustering model, named as GP-MVC, to address the incomplete multi-view problem.
First, multi-view encoder networks are trained to learn common low-dimensional representations, followed by a clustering layer to capture the consistent cluster structure across multiple views.
Second, view-specific generative adversarial networks are developed to generate the missing data of one view conditioning on the shared representation given by other views.
arXiv Detail & Related papers (2020-03-29T17:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.