CDIMC-net: Cognitive Deep Incomplete Multi-view Clustering Network
- URL: http://arxiv.org/abs/2403.19514v1
- Date: Thu, 28 Mar 2024 15:45:03 GMT
- Title: CDIMC-net: Cognitive Deep Incomplete Multi-view Clustering Network
- Authors: Jie Wen, Zheng Zhang, Yong Xu, Bob Zhang, Lunke Fei, Guo-Sen Xie,
- Abstract summary: We propose a novel incomplete multi-view clustering network, called Cognitive Deep Incomplete Multi-view Clustering Network (CDIMC-net)
It captures the high-level features and local structure of each view by incorporating the view-specific deep encoders and graph embedding strategy into a framework.
Based on the human cognition, i.e., learning from easy to hard, it introduces a self-paced strategy to select the most confident samples for model training.
- Score: 53.72046586512026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, incomplete multi-view clustering, which studies the challenging multi-view clustering problem on missing views, has received growing research interests. Although a series of methods have been proposed to address this issue, the following problems still exist: 1) Almost all of the existing methods are based on shallow models, which is difficult to obtain discriminative common representations. 2) These methods are generally sensitive to noise or outliers since the negative samples are treated equally as the important samples. In this paper, we propose a novel incomplete multi-view clustering network, called Cognitive Deep Incomplete Multi-view Clustering Network (CDIMC-net), to address these issues. Specifically, it captures the high-level features and local structure of each view by incorporating the view-specific deep encoders and graph embedding strategy into a framework. Moreover, based on the human cognition, i.e., learning from easy to hard, it introduces a self-paced strategy to select the most confident samples for model training, which can reduce the negative influence of outliers. Experimental results on several incomplete datasets show that CDIMC-net outperforms the state-of-the-art incomplete multi-view clustering methods.
Related papers
- Incomplete Contrastive Multi-View Clustering with High-Confidence
Guiding [7.305817202715752]
We propose a novel Incomplete Contrastive Multi-View Clustering method with high-confidence guiding (ICMVC)
Firstly, we proposed a multi-view consistency relation transfer plus graph convolutional network to tackle missing values problem.
Secondly, instance-level attention fusion and high-confidence guiding are proposed to exploit the complementary information.
arXiv Detail & Related papers (2023-12-14T07:28:41Z) - A Novel Approach for Effective Multi-View Clustering with
Information-Theoretic Perspective [24.630259061774836]
This study presents a new approach called Sufficient Multi-View Clustering (SUMVC) that examines the multi-view clustering framework from an information-theoretic standpoint.
Firstly, we develop a simple and reliable multi-view clustering method SCMVC that employs variational analysis to generate consistent information.
Secondly, we propose a sufficient representation lower bound to enhance consistent information and minimise unnecessary information among views.
arXiv Detail & Related papers (2023-09-25T09:41:11Z) - Deep Incomplete Multi-view Clustering with Cross-view Partial Sample and
Prototype Alignment [50.82982601256481]
We propose a Cross-view Partial Sample and Prototype Alignment Network (CPSPAN) for Deep Incomplete Multi-view Clustering.
Unlike existing contrastive-based methods, we adopt pair-observed data alignment as 'proxy supervised signals' to guide instance-to-instance correspondence construction.
arXiv Detail & Related papers (2023-03-28T02:31:57Z) - A Survey on Incomplete Multi-view Clustering [66.50475816827208]
In practical applications, such as disease diagnosis, multimedia analysis, and recommendation system, not all views of samples are available in many cases.
Incomplete multi-view clustering is referred to as incomplete multi-view clustering.
arXiv Detail & Related papers (2022-08-17T03:00:59Z) - Deep Multi-View Semi-Supervised Clustering with Sample Pairwise
Constraints [10.226754903113164]
We propose a novel Deep Multi-view Semi-supervised Clustering (DMSC) method, which jointly optimize three kinds of losses during networks finetuning.
We demonstrate that our proposed approach performs better than the state-of-the-art multi-view and single-view competitors.
arXiv Detail & Related papers (2022-06-10T08:51:56Z) - Error-Robust Multi-View Clustering: Progress, Challenges and
Opportunities [67.54503077766171]
Since label information is often expensive to acquire, multi-view clustering has gained growing interest.
Error-robust multi-view clustering approaches with explicit error removal formulation can be structured into five broad research categories.
This survey summarizes and reviews recent advances in error-robust clustering for multi-view data.
arXiv Detail & Related papers (2021-05-07T04:03:02Z) - Deep Adversarial Inconsistent Cognitive Sampling for Multi-view
Progressive Subspace Clustering [45.8773004047657]
We propose a novel Deep Adversarial Inconsistent Cognitive Sampling (DAICS) method for multi-view progressive subspace clustering.
We develop a multi-view cognitive sampling strategy to select the input samples from easy to difficult for multi-view clustering network training.
Experimental results on four real-world datasets demonstrate the superiority of DAICS over the state-of-the-art methods.
arXiv Detail & Related papers (2021-01-11T09:32:34Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z) - Generative Partial Multi-View Clustering [133.36721417531734]
We propose a generative partial multi-view clustering model, named as GP-MVC, to address the incomplete multi-view problem.
First, multi-view encoder networks are trained to learn common low-dimensional representations, followed by a clustering layer to capture the consistent cluster structure across multiple views.
Second, view-specific generative adversarial networks are developed to generate the missing data of one view conditioning on the shared representation given by other views.
arXiv Detail & Related papers (2020-03-29T17:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.