論文の概要: Neural Embeddings for Text
- arxiv url: http://arxiv.org/abs/2208.08386v1
- Date: Wed, 17 Aug 2022 16:26:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-18 12:46:22.362920
- Title: Neural Embeddings for Text
- Title(参考訳): テキストのためのニューラル埋め込み
- Authors: Oleg Vasilyev, John Bohannon
- Abstract要約: 本稿では,意味的意味を深く表現する自然言語テキストの埋め込みについて提案する。
この方法では、言語モデルにテキストから学習させ、文字通りその脳を選択して、モデルのニューロンの実際の重みを取り、ベクトルを生成する。
ニューラルネットワークの埋め込みとGPT文の埋め込みを比較した。
- 参考スコア(独自算出の注目度): 14.08706290287121
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new kind of embedding for natural language text that deeply
represents semantic meaning. Standard text embeddings use the vector output of
a pretrained language model. In our method, we let a language model learn from
the text and then literally pick its brain, taking the actual weights of the
model's neurons to generate a vector. We call this representation of the text a
neural embedding. The technique may generalize beyond text and language models,
but we first explore its properties for natural language processing. We compare
neural embeddings with GPT sentence (SGPT) embeddings on several datasets. We
observe that neural embeddings achieve comparable performance with a far
smaller model, and the errors are different.
- Abstract(参考訳): 本稿では,意味的意味を深く表現する自然言語テキストの埋め込みについて提案する。
標準テキスト埋め込みは、事前訓練された言語モデルのベクトル出力を使用する。
この方法では、言語モデルにテキストから学習させ、その脳を文字通り選択させ、モデルのニューロンの実際の重みを取ってベクトルを生成する。
私たちはこのテキストの表現を神経埋め込みと呼んでいる。
この手法はテキストや言語モデルを超えて一般化するが、自然言語処理におけるその特性を最初に探求する。
ニューラルネットワークの埋め込みとGPT文(SGPT)の埋め込みを比較した。
我々は、神経組込みがはるかに小さなモデルで同等のパフォーマンスを達成し、エラーが異なることを観察する。
関連論文リスト
- Pixel Sentence Representation Learning [67.4775296225521]
本研究では,視覚表現学習プロセスとして,文レベルのテキスト意味論の学習を概念化する。
タイポスや単語順シャッフルのような視覚的に接地されたテキスト摂動法を採用し、人間の認知パターンに共鳴し、摂動を連続的に認識できるようにする。
我々のアプローチは、大規模に教師なしのトピックアライメントトレーニングと自然言語推論監督によってさらに強化されている。
論文 参考訳(メタデータ) (2024-02-13T02:46:45Z) - Probabilistic Transformer: A Probabilistic Dependency Model for
Contextual Word Representation [52.270712965271656]
本稿では,文脈表現の新しいモデルを提案する。
モデルのグラフは変換器に似ており、依存関係と自己意識の対応性がある。
実験により,本モデルが小型・中型データセットのトランスフォーマーと競合することを示す。
論文 参考訳(メタデータ) (2023-11-26T06:56:02Z) - Investigating the Encoding of Words in BERT's Neurons using Feature
Textualization [11.943486282441143]
本稿では,埋め込み語空間におけるニューロンの表現を生成する手法を提案する。
生成した表現は、個々のニューロンにおける符号化された知識についての洞察を与えることができる。
論文 参考訳(メタデータ) (2023-11-14T15:21:49Z) - Transparency at the Source: Evaluating and Interpreting Language Models
With Access to the True Distribution [4.01799362940916]
人工的な言語のようなデータを用いて、ニューラルネットワークモデルのトレーニング、評価、解釈を行う。
データは、巨大な自然言語コーパスから派生した巨大な確率文法を用いて生成される。
基礎となる真の情報源にアクセスすることで、異なる単語のクラス間の動的学習における顕著な違いと結果が示される。
論文 参考訳(メタデータ) (2023-10-23T12:03:01Z) - Mitigating Data Scarcity for Large Language Models [7.259279261659759]
近年,事前学習型ニューラルネットワークモデル (PNLM) が嵐による自然言語処理の分野に進出している。
データ不足は、医学などの専門分野や、AI研究によって調査されていない低リソース言語でよく見られる。
この論文では、データ強化とニューラルアンサンブル学習技術を用いて、データの不足を軽減することに焦点を当てる。
論文 参考訳(メタデータ) (2023-02-03T15:17:53Z) - What do Large Language Models Learn beyond Language? [10.9650651784511]
事前学習モデルは、非事前学習ニューラルモデルに匹敵する性能を著しく上回っていることがわかった。
実験により、多言語テキストやコンピュータコードで事前学習しても、事前学習の効果が持続することが明らかとなった。
その結果,言語モデルの事前学習能力と帰納学習能力との間には,未解明の深い関係があることが示唆された。
論文 参考訳(メタデータ) (2022-10-21T23:43:13Z) - Quark: Controllable Text Generation with Reinforced Unlearning [68.07749519374089]
大規模言語モデルは、しばしばユーザの期待に合わない振る舞いを学ぶ。
本稿では,(不必要な)特性を定量化する報酬関数を最適化するアルゴリズムQuarkを紹介する。
未学習の毒性、ネガティブな感情、反復について、我々の実験はQuarkが強いベースラインと最先端の強化学習法の両方より優れていることを示している。
論文 参考訳(メタデータ) (2022-05-26T21:11:51Z) - Dependency-based Mixture Language Models [53.152011258252315]
依存性に基づく混合言語モデルを紹介する。
より詳しくは、依存関係モデリングの新たな目的により、まずニューラルネットワークモデルを訓練する。
次に、前回の依存性モデリング確率分布と自己意図を混合することにより、次の確率を定式化する。
論文 参考訳(メタデータ) (2022-03-19T06:28:30Z) - Towards Zero-shot Language Modeling [90.80124496312274]
人間の言語学習に誘導的に偏りを持つニューラルモデルを構築した。
類型的に多様な訓練言語のサンプルからこの分布を推測する。
我々は、保留言語に対する遠隔監視として、追加の言語固有の側情報を利用する。
論文 参考訳(メタデータ) (2021-08-06T23:49:18Z) - Low-Dimensional Structure in the Space of Language Representations is
Reflected in Brain Responses [62.197912623223964]
言語モデルと翻訳モデルは,単語の埋め込み,構文的・意味的タスク,将来的な単語埋め込みとの間を円滑に介在する低次元構造を示す。
この表現埋め込みは、各特徴空間が、fMRIを用いて記録された自然言語刺激に対する人間の脳反応にどれだけうまく対応しているかを予測することができる。
これは、埋め込みが脳の自然言語表現構造の一部を捉えていることを示唆している。
論文 参考訳(メタデータ) (2021-06-09T22:59:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。