Learning with Local Gradients at the Edge
- URL: http://arxiv.org/abs/2208.08503v1
- Date: Wed, 17 Aug 2022 19:51:06 GMT
- Title: Learning with Local Gradients at the Edge
- Authors: Michael Lomnitz, Zachary Daniels, David Zhang, Michael Piacentino
- Abstract summary: We present a novel backpropagation-free optimization algorithm dubbed Target Projection Gradient Descent (tpSGD)
tpSGD generalizes direct random target projection to work with arbitrary loss functions.
We evaluate the performance of tpSGD in training deep neural networks and extend the approach to multi-layer RNNs.
- Score: 14.94491070863641
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: To enable learning on edge devices with fast convergence and low memory, we
present a novel backpropagation-free optimization algorithm dubbed Target
Projection Stochastic Gradient Descent (tpSGD). tpSGD generalizes direct random
target projection to work with arbitrary loss functions and extends target
projection for training recurrent neural networks (RNNs) in addition to
feedforward networks. tpSGD uses layer-wise stochastic gradient descent (SGD)
and local targets generated via random projections of the labels to train the
network layer-by-layer with only forward passes. tpSGD doesn't require
retaining gradients during optimization, greatly reducing memory allocation
compared to SGD backpropagation (BP) methods that require multiple instances of
the entire neural network weights, input/output, and intermediate results. Our
method performs comparably to BP gradient-descent within 5% accuracy on
relatively shallow networks of fully connected layers, convolutional layers,
and recurrent layers. tpSGD also outperforms other state-of-the-art
gradient-free algorithms in shallow models consisting of multi-layer
perceptrons, convolutional neural networks (CNNs), and RNNs with competitive
accuracy and less memory and time. We evaluate the performance of tpSGD in
training deep neural networks (e.g. VGG) and extend the approach to multi-layer
RNNs. These experiments highlight new research directions related to optimized
layer-based adaptor training for domain-shift using tpSGD at the edge.
Related papers
- Layer-wise Adaptive Step-Sizes for Stochastic First-Order Methods for
Deep Learning [8.173034693197351]
We propose a new per-layer adaptive step-size procedure for first-order optimization methods in deep learning.
The proposed approach exploits the layer-wise curvature information contained in the diagonal blocks of the Hessian in deep neural networks (DNNs) to compute adaptive step-sizes (i.e., LRs) for each layer.
Numerical experiments show that SGD with momentum and AdamW combined with the proposed per-layer step-sizes are able to choose effective LR schedules.
arXiv Detail & Related papers (2023-05-23T04:12:55Z) - Membrane Potential Distribution Adjustment and Parametric Surrogate
Gradient in Spiking Neural Networks [3.485537704990941]
Surrogate gradient (SG) strategy is investigated and applied to circumvent this issue and train SNNs from scratch.
We propose the parametric surrogate gradient (PSG) method to iteratively update SG and eventually determine an optimal surrogate gradient parameter.
Experimental results demonstrate that the proposed methods can be readily integrated with backpropagation through time (BPTT) algorithm.
arXiv Detail & Related papers (2023-04-26T05:02:41Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Multi-Level Firing with Spiking DS-ResNet: Enabling Better and Deeper
Directly-Trained Spiking Neural Networks [19.490903216456758]
Spiking neural networks (SNNs) are neural networks with asynchronous discrete and sparse characteristics.
We propose a multi-level firing (MLF) method based on the existing spiking-suppressed residual network (spiking DS-ResNet)
arXiv Detail & Related papers (2022-10-12T16:39:46Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models.
Recent progress in training methods has enabled successful deep SNNs on large-scale tasks with low latency.
We propose online training through time (OTTT) for SNNs, which is derived from BPTT to enable forward-in-time learning.
arXiv Detail & Related papers (2022-10-09T07:47:56Z) - Scaling Forward Gradient With Local Losses [117.22685584919756]
Forward learning is a biologically plausible alternative to backprop for learning deep neural networks.
We show that it is possible to substantially reduce the variance of the forward gradient by applying perturbations to activations rather than weights.
Our approach matches backprop on MNIST and CIFAR-10 and significantly outperforms previously proposed backprop-free algorithms on ImageNet.
arXiv Detail & Related papers (2022-10-07T03:52:27Z) - Selfish Sparse RNN Training [13.165729746380816]
We propose an approach to train sparse RNNs with a fixed parameter count in one single run, without compromising performance.
We achieve state-of-the-art sparse training results with various datasets on Penn TreeBank and Wikitext-2.
arXiv Detail & Related papers (2021-01-22T10:45:40Z) - Optimizing Memory Placement using Evolutionary Graph Reinforcement
Learning [56.83172249278467]
We introduce Evolutionary Graph Reinforcement Learning (EGRL), a method designed for large search spaces.
We train and validate our approach directly on the Intel NNP-I chip for inference.
We additionally achieve 28-78% speed-up compared to the native NNP-I compiler on all three workloads.
arXiv Detail & Related papers (2020-07-14T18:50:12Z) - DHP: Differentiable Meta Pruning via HyperNetworks [158.69345612783198]
This paper introduces a differentiable pruning method via hypernetworks for automatic network pruning.
Latent vectors control the output channels of the convolutional layers in the backbone network and act as a handle for the pruning of the layers.
Experiments are conducted on various networks for image classification, single image super-resolution, and denoising.
arXiv Detail & Related papers (2020-03-30T17:59:18Z) - Semi-Implicit Back Propagation [1.5533842336139065]
We propose a semi-implicit back propagation method for neural network training.
The difference on the neurons are propagated in a backward fashion and the parameters are updated with proximal mapping.
Experiments on both MNIST and CIFAR-10 demonstrate that the proposed algorithm leads to better performance in terms of both loss decreasing and training/validation accuracy.
arXiv Detail & Related papers (2020-02-10T03:26:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.