Membrane Potential Distribution Adjustment and Parametric Surrogate
Gradient in Spiking Neural Networks
- URL: http://arxiv.org/abs/2304.13289v1
- Date: Wed, 26 Apr 2023 05:02:41 GMT
- Title: Membrane Potential Distribution Adjustment and Parametric Surrogate
Gradient in Spiking Neural Networks
- Authors: Siqi Wang, Tee Hiang Cheng, Meng-Hiot Lim
- Abstract summary: Surrogate gradient (SG) strategy is investigated and applied to circumvent this issue and train SNNs from scratch.
We propose the parametric surrogate gradient (PSG) method to iteratively update SG and eventually determine an optimal surrogate gradient parameter.
Experimental results demonstrate that the proposed methods can be readily integrated with backpropagation through time (BPTT) algorithm.
- Score: 3.485537704990941
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As an emerging network model, spiking neural networks (SNNs) have aroused
significant research attentions in recent years. However, the energy-efficient
binary spikes do not augur well with gradient descent-based training
approaches. Surrogate gradient (SG) strategy is investigated and applied to
circumvent this issue and train SNNs from scratch. Due to the lack of
well-recognized SG selection rule, most SGs are chosen intuitively. We propose
the parametric surrogate gradient (PSG) method to iteratively update SG and
eventually determine an optimal surrogate gradient parameter, which calibrates
the shape of candidate SGs. In SNNs, neural potential distribution tends to
deviate unpredictably due to quantization error. We evaluate such potential
shift and propose methodology for potential distribution adjustment (PDA) to
minimize the loss of undesired pre-activations. Experimental results
demonstrate that the proposed methods can be readily integrated with
backpropagation through time (BPTT) algorithm and help modulated SNNs to
achieve state-of-the-art performance on both static and dynamic dataset with
fewer timesteps.
Related papers
- Randomized Forward Mode Gradient for Spiking Neural Networks in Scientific Machine Learning [4.178826560825283]
Spiking neural networks (SNNs) represent a promising approach in machine learning, combining the hierarchical learning capabilities of deep neural networks with the energy efficiency of spike-based computations.
Traditional end-to-end training of SNNs is often based on back-propagation, where weight updates are derived from gradients computed through the chain rule.
This method encounters challenges due to its limited biological plausibility and inefficiencies on neuromorphic hardware.
In this study, we introduce an alternative training approach for SNNs. Instead of using back-propagation, we leverage weight perturbation methods within a forward-mode
arXiv Detail & Related papers (2024-11-11T15:20:54Z) - Directly Training Temporal Spiking Neural Network with Sparse Surrogate Gradient [8.516243389583702]
Brain-inspired Spiking Neural Networks (SNNs) have attracted much attention due to their event-based computing and energy-efficient features.
We propose Masked Surrogate Gradients (MSGs) to balance the effectiveness of training and the sparseness of the gradient, thereby improving the generalization ability of SNNs.
arXiv Detail & Related papers (2024-06-28T04:21:32Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
We study the generalization behavior of shallow neural networks (SNNs) by leveraging the concept of algorithmic stability.
We consider gradient descent (GD) and gradient descent (SGD) to train SNNs, for both of which we develop consistent excess bounds.
arXiv Detail & Related papers (2022-09-19T18:48:00Z) - Learning with Local Gradients at the Edge [14.94491070863641]
We present a novel backpropagation-free optimization algorithm dubbed Target Projection Gradient Descent (tpSGD)
tpSGD generalizes direct random target projection to work with arbitrary loss functions.
We evaluate the performance of tpSGD in training deep neural networks and extend the approach to multi-layer RNNs.
arXiv Detail & Related papers (2022-08-17T19:51:06Z) - Differentially private training of neural networks with Langevin
dynamics forcalibrated predictive uncertainty [58.730520380312676]
We show that differentially private gradient descent (DP-SGD) can yield poorly calibrated, overconfident deep learning models.
This represents a serious issue for safety-critical applications, e.g. in medical diagnosis.
arXiv Detail & Related papers (2021-07-09T08:14:45Z) - A Biased Graph Neural Network Sampler with Near-Optimal Regret [57.70126763759996]
Graph neural networks (GNN) have emerged as a vehicle for applying deep network architectures to graph and relational data.
In this paper, we build upon existing work and treat GNN neighbor sampling as a multi-armed bandit problem.
We introduce a newly-designed reward function that introduces some degree of bias designed to reduce variance and avoid unstable, possibly-unbounded payouts.
arXiv Detail & Related papers (2021-03-01T15:55:58Z) - Bayesian Graph Neural Networks with Adaptive Connection Sampling [62.51689735630133]
We propose a unified framework for adaptive connection sampling in graph neural networks (GNNs)
The proposed framework not only alleviates over-smoothing and over-fitting tendencies of deep GNNs, but also enables learning with uncertainty in graph analytic tasks with GNNs.
arXiv Detail & Related papers (2020-06-07T07:06:35Z) - Stochastic Graph Neural Networks [123.39024384275054]
Graph neural networks (GNNs) model nonlinear representations in graph data with applications in distributed agent coordination, control, and planning.
Current GNN architectures assume ideal scenarios and ignore link fluctuations that occur due to environment, human factors, or external attacks.
In these situations, the GNN fails to address its distributed task if the topological randomness is not considered accordingly.
arXiv Detail & Related papers (2020-06-04T08:00:00Z) - Semi-Implicit Back Propagation [1.5533842336139065]
We propose a semi-implicit back propagation method for neural network training.
The difference on the neurons are propagated in a backward fashion and the parameters are updated with proximal mapping.
Experiments on both MNIST and CIFAR-10 demonstrate that the proposed algorithm leads to better performance in terms of both loss decreasing and training/validation accuracy.
arXiv Detail & Related papers (2020-02-10T03:26:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.