CP-PINNs: Data-Driven Changepoints Detection in PDEs Using Online Optimized Physics-Informed Neural Networks
- URL: http://arxiv.org/abs/2208.08626v3
- Date: Mon, 1 Apr 2024 21:36:20 GMT
- Title: CP-PINNs: Data-Driven Changepoints Detection in PDEs Using Online Optimized Physics-Informed Neural Networks
- Authors: Zhikang Dong, Pawel Polak,
- Abstract summary: We investigate the inverse problem for Partial Differential Equations (PDEs) in scenarios where the parameters of the given PDE dynamics may exhibit changepoints at random time.
We employ Physics-Informed Neural Networks (PINNs) - universal approximators capable of estimating the solution of any physical law.
We propose a PINNs extension using a Total-Variation penalty, which allows to accommodate multiple changepoints in the PDE dynamics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the inverse problem for Partial Differential Equations (PDEs) in scenarios where the parameters of the given PDE dynamics may exhibit changepoints at random time. We employ Physics-Informed Neural Networks (PINNs) - universal approximators capable of estimating the solution of any physical law described by a system of PDEs, which serves as a regularization during neural network training, restricting the space of admissible solutions and enhancing function approximation accuracy. We demonstrate that when the system exhibits sudden changes in the PDE dynamics, this regularization is either insufficient to accurately estimate the true dynamics, or it may result in model miscalibration and failure. Consequently, we propose a PINNs extension using a Total-Variation penalty, which allows to accommodate multiple changepoints in the PDE dynamics and significantly improves function approximation. These changepoints can occur at random locations over time and are estimated concurrently with the solutions. Additionally, we introduce an online learning method for re-weighting loss function terms dynamically. Through empirical analysis using examples of various equations with parameter changes, we showcase the advantages of our proposed model. In the absence of changepoints, the model reverts to the original PINNs model. However, when changepoints are present, our approach yields superior parameter estimation, improved model fitting, and reduced training error compared to the original PINNs model.
Related papers
- RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - Learning solutions of parametric Navier-Stokes with physics-informed
neural networks [0.3989223013441816]
We leverageformed-Informed Neural Networks (PINs) to learn solution functions of parametric Navier-Stokes equations (NSE)
We consider the parameter(s) of interest as inputs of PINs along with coordinates, and train PINs on numerical solutions of parametric-PDES for instances of the parameters.
We show that our proposed approach results in optimizing PINN models that learn the solution functions while making sure that flow predictions are in line with conservational laws of mass and momentum.
arXiv Detail & Related papers (2024-02-05T16:19:53Z) - Reduced-order modeling for parameterized PDEs via implicit neural
representations [4.135710717238787]
We present a new data-driven reduced-order modeling approach to efficiently solve parametrized partial differential equations (PDEs)
The proposed framework encodes PDE and utilizes a parametrized neural ODE (PNODE) to learn latent dynamics characterized by multiple PDE parameters.
We evaluate the proposed method at a large Reynolds number and obtain up to speedup of O(103) and 1% relative error to the ground truth values.
arXiv Detail & Related papers (2023-11-28T01:35:06Z) - Grad-Shafranov equilibria via data-free physics informed neural networks [0.0]
We show that PINNs can accurately and effectively solve the Grad-Shafranov equation with several different boundary conditions.
We introduce a parameterized PINN framework, expanding the input space to include variables such as pressure, aspect ratio, elongation, and triangularity.
arXiv Detail & Related papers (2023-11-22T16:08:38Z) - Lie Point Symmetry and Physics Informed Networks [59.56218517113066]
We propose a loss function that informs the network about Lie point symmetries in the same way that PINN models try to enforce the underlying PDE through a loss function.
Our symmetry loss ensures that the infinitesimal generators of the Lie group conserve the PDE solutions.
Empirical evaluations indicate that the inductive bias introduced by the Lie point symmetries of the PDEs greatly boosts the sample efficiency of PINNs.
arXiv Detail & Related papers (2023-11-07T19:07:16Z) - PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks [22.39904196850583]
Physics-Informed Neural Networks (PINNs) have emerged as a promising deep learning framework for approximating numerical solutions to partial differential equations (PDEs)
We introduce a novel Transformer-based framework, termed PINNsFormer, designed to address this limitation.
PINNsFormer achieves superior generalization ability and accuracy across various scenarios, including PINNs failure modes and high-dimensional PDEs.
arXiv Detail & Related papers (2023-07-21T18:06:27Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and material models.
We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned.
We introduce a new framework termed "Neural Constitutive Laws" (NCLaw) which utilizes a network architecture that strictly guarantees standard priors.
arXiv Detail & Related papers (2023-04-27T17:42:24Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Physics-Informed Neural Network Method for Solving One-Dimensional
Advection Equation Using PyTorch [0.0]
PINNs approach allows training neural networks while respecting the PDEs as a strong constraint in the optimization.
In standard small-scale circulation simulations, it is shown that the conventional approach incorporates a pseudo diffusive effect that is almost as large as the effect of the turbulent diffusion model.
Of all the schemes tested, only the PINNs approximation accurately predicted the outcome.
arXiv Detail & Related papers (2021-03-15T05:39:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.