論文の概要: Open Information Extraction from 2007 to 2022 -- A Survey
- arxiv url: http://arxiv.org/abs/2208.08690v1
- Date: Thu, 18 Aug 2022 08:03:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-19 13:27:43.783203
- Title: Open Information Extraction from 2007 to 2022 -- A Survey
- Title(参考訳): 2007年から2022年までのオープン情報抽出 -調査-
- Authors: Pai Liu, Wenyang Gao, Wenjie Dong, Songfang Huang, Yue Zhang
- Abstract要約: 本調査では,2007年から2022年までのオープン情報抽出技術について紹介し,新しいモデルに着目した。
近年のOIE技術の発展に対応するため,情報の観点からの新たな分類手法を提案する。
- 参考スコア(独自算出の注目度): 21.382430482407393
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Open information extraction is an important NLP task that targets extracting
structured information from unstructured text without limitations on the
relation type or the domain of the text. This survey paper covers open
information extraction technologies from 2007 to 2022 with a focus on new
models not covered by previous surveys. We propose a new categorization method
from the source of information perspective to accommodate the development of
recent OIE technologies. In addition, we summarize three major approaches based
on task settings as well as current popular datasets and model evaluation
metrics. Given the comprehensive review, several future directions are shown
from datasets, source of information, output form, method, and evaluation
metric aspects.
- Abstract(参考訳): オープン情報抽出は、テキストの関連タイプやドメインに制限なく、構造化されていないテキストから構造化情報を抽出することを目的とした重要なnlpタスクである。
本調査では,2007年から2022年までのオープンな情報抽出技術について紹介し,従来の調査対象外の新モデルに焦点を当てた。
近年のOIE技術の発展に対応するため,情報の観点からの新たな分類手法を提案する。
さらに、タスク設定に基づく3つの主要なアプローチと、現在の一般的なデータセットとモデル評価メトリクスを要約する。
包括的なレビューをすると、データセット、情報ソース、出力フォーム、方法、評価メトリックの側面から、いくつかの将来の方向性が示されます。
関連論文リスト
- Towards Robust Evaluation: A Comprehensive Taxonomy of Datasets and Metrics for Open Domain Question Answering in the Era of Large Language Models [0.0]
自然言語処理におけるオープンドメイン質問回答(ODQA)は,大規模知識コーパスを用いて,事実質問に回答するシステムを構築する。
高品質なデータセットは、現実的なシナリオでモデルをトレーニングするために使用されます。
標準化されたメトリクスは、異なるODQAシステム間の比較を容易にする。
論文 参考訳(メタデータ) (2024-06-19T05:43:02Z) - From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models [98.41645229835493]
グラフ形式のデータの可視化は、データ分析において重要な役割を担い、重要な洞察を提供し、情報的な意思決定を支援する。
大規模言語モデルのような大規模な基盤モデルは、様々な自然言語処理タスクに革命をもたらした。
本研究は,自然言語処理,コンピュータビジョン,データ解析の分野における研究者や実践者の包括的資源として機能する。
論文 参考訳(メタデータ) (2024-03-18T17:57:09Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
大規模言語モデル(LLM)は、テキスト理解と生成において顕著な能力を示した。
各種IEサブタスクと技術の観点から,これらの作品を分類して概観する。
我々は,最も先進的な手法を実証的に分析し,LLMによるIEタスクの出現傾向を明らかにする。
論文 参考訳(メタデータ) (2023-12-29T14:25:22Z) - Deep learning for table detection and structure recognition: A survey [49.09628624903334]
本調査の目的は,テーブル検出の分野での大きな進展を深く理解することである。
この分野における古典的アプリケーションと新しいアプリケーションの両方について分析する。
既存のモデルのデータセットとソースコードは、読者にこの膨大な文献のコンパスを提供するために組織されている。
論文 参考訳(メタデータ) (2022-11-15T19:42:27Z) - A Survey on Neural Open Information Extraction: Current Status and
Future Directions [87.30702606041407]
Open Information extract (OpenIE) は、大規模コーパスからの関係事実のドメインに依存しない発見を容易にする。
我々は、最先端のニューラルなOpenIEモデル、その設計決定、強み、弱点について概観する。
論文 参考訳(メタデータ) (2022-05-24T02:24:55Z) - Document AI: Benchmarks, Models and Applications [35.46858492311289]
ドキュメントAI(Document AI)とは、ビジネス文書を自動的に読み、理解し、分析する技術である。
近年、ディープラーニング技術の人気は、Document AIの開発を大きく進めている。
本稿では,代表モデル,タスク,ベンチマークデータセットについて概説する。
論文 参考訳(メタデータ) (2021-11-16T16:43:07Z) - Deep Learning Schema-based Event Extraction: Literature Review and
Current Trends [60.29289298349322]
ディープラーニングに基づくイベント抽出技術が研究ホットスポットとなっている。
本稿では,ディープラーニングモデルに焦点をあて,最先端のアプローチを見直し,そのギャップを埋める。
論文 参考訳(メタデータ) (2021-07-05T16:32:45Z) - Retrieving and Reading: A Comprehensive Survey on Open-domain Question
Answering [62.88322725956294]
OpenQAの最近の研究動向を概観し、特にニューラルMSC技術を導入したシステムに注目した。
Retriever-Reader' と呼ばれる最新の OpenQA アーキテクチャを導入し、このアーキテクチャに従うさまざまなシステムを分析します。
次に、OpenQAシステムの開発における主要な課題について議論し、一般的に使用されるベンチマークの分析を提供する。
論文 参考訳(メタデータ) (2021-01-04T04:47:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。