Semi-supervised domain adaptation with CycleGAN guided by a downstream
task loss
- URL: http://arxiv.org/abs/2208.08815v1
- Date: Thu, 18 Aug 2022 13:13:30 GMT
- Title: Semi-supervised domain adaptation with CycleGAN guided by a downstream
task loss
- Authors: Annika M\"utze, Matthias Rottmann, Hanno Gottschalk
- Abstract summary: Domain adaptation is of huge interest as labeling is an expensive and error-prone task.
Image-to-image approaches can be used to mitigate the shift in the input.
We propose a "task aware" version of a GAN in an image-to-image domain adaptation approach.
- Score: 4.941630596191806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain adaptation is of huge interest as labeling is an expensive and
error-prone task, especially when labels are needed on pixel-level like in
semantic segmentation. Therefore, one would like to be able to train neural
networks on synthetic domains, where data is abundant and labels are precise.
However, these models often perform poorly on out-of-domain images. To mitigate
the shift in the input, image-to-image approaches can be used. Nevertheless,
standard image-to-image approaches that bridge the domain of deployment with
the synthetic training domain do not focus on the downstream task but only on
the visual inspection level. We therefore propose a "task aware" version of a
GAN in an image-to-image domain adaptation approach. With the help of a small
amount of labeled ground truth data, we guide the image-to-image translation to
a more suitable input image for a semantic segmentation network trained on
synthetic data (synthetic-domain expert). The main contributions of this work
are 1) a modular semi-supervised domain adaptation method for semantic
segmentation by training a downstream task aware CycleGAN while refraining from
adapting the synthetic semantic segmentation expert 2) the demonstration that
the method is applicable to complex domain adaptation tasks and 3) a less
biased domain gap analysis by using from scratch networks. We evaluate our
method on a classification task as well as on semantic segmentation. Our
experiments demonstrate that our method outperforms CycleGAN - a standard
image-to-image approach - by 7 percent points in accuracy in a classification
task using only 70 (10%) ground truth images. For semantic segmentation we can
show an improvement of about 4 to 7 percent points in mean Intersection over
union on the Cityscapes evaluation dataset with only 14 ground truth images
during training.
Related papers
- I2F: A Unified Image-to-Feature Approach for Domain Adaptive Semantic
Segmentation [55.633859439375044]
Unsupervised domain adaptation (UDA) for semantic segmentation is a promising task freeing people from heavy annotation work.
Key idea to tackle this problem is to perform both image-level and feature-level adaptation jointly.
This paper proposes a novel UDA pipeline for semantic segmentation that unifies image-level and feature-level adaptation.
arXiv Detail & Related papers (2023-01-03T15:19:48Z) - Unsupervised Domain Adaptation for Semantic Segmentation using One-shot
Image-to-Image Translation via Latent Representation Mixing [9.118706387430883]
We propose a new unsupervised domain adaptation method for the semantic segmentation of very high resolution images.
An image-to-image translation paradigm is proposed, based on an encoder-decoder principle where latent content representations are mixed across domains.
Cross-city comparative experiments have shown that the proposed method outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2022-12-07T18:16:17Z) - Location-Aware Self-Supervised Transformers [74.76585889813207]
We propose to pretrain networks for semantic segmentation by predicting the relative location of image parts.
We control the difficulty of the task by masking a subset of the reference patch features visible to those of the query.
Our experiments show that this location-aware pretraining leads to representations that transfer competitively to several challenging semantic segmentation benchmarks.
arXiv Detail & Related papers (2022-12-05T16:24:29Z) - Edge-preserving Domain Adaptation for semantic segmentation of Medical
Images [0.0]
Domain adaptation is a technique to address the lack of massive amounts of labeled data in unseen environments.
We propose a model that adapts between domains using cycle-consistent loss while maintaining edge details of the original images.
We demonstrate the effectiveness of our algorithm by comparing it to other approaches on two eye fundus vessels segmentation datasets.
arXiv Detail & Related papers (2021-11-18T18:14:33Z) - Semantic Distribution-aware Contrastive Adaptation for Semantic
Segmentation [50.621269117524925]
Domain adaptive semantic segmentation refers to making predictions on a certain target domain with only annotations of a specific source domain.
We present a semantic distribution-aware contrastive adaptation algorithm that enables pixel-wise representation alignment.
We evaluate SDCA on multiple benchmarks, achieving considerable improvements over existing algorithms.
arXiv Detail & Related papers (2021-05-11T13:21:25Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - Consistency Regularization with High-dimensional Non-adversarial
Source-guided Perturbation for Unsupervised Domain Adaptation in Segmentation [15.428323201750144]
BiSIDA employs consistency regularization to efficiently exploit information from the unlabeled target dataset.
BiSIDA achieves new state-of-the-art on two commonly-used synthetic-to-real domain adaptation benchmarks.
arXiv Detail & Related papers (2020-09-18T03:26:44Z) - Semantically Adaptive Image-to-image Translation for Domain Adaptation
of Semantic Segmentation [1.8275108630751844]
We address the problem of domain adaptation for semantic segmentation of street scenes.
Many state-of-the-art approaches focus on translating the source image while imposing that the result should be semantically consistent with the input.
We advocate that the image semantics can also be exploited to guide the translation algorithm.
arXiv Detail & Related papers (2020-09-02T16:16:50Z) - FDA: Fourier Domain Adaptation for Semantic Segmentation [82.4963423086097]
We describe a simple method for unsupervised domain adaptation, whereby the discrepancy between the source and target distributions is reduced by swapping the low-frequency spectrum of one with the other.
We illustrate the method in semantic segmentation, where densely annotated images are aplenty in one domain, but difficult to obtain in another.
Our results indicate that even simple procedures can discount nuisance variability in the data that more sophisticated methods struggle to learn away.
arXiv Detail & Related papers (2020-04-11T22:20:48Z) - Phase Consistent Ecological Domain Adaptation [76.75730500201536]
We focus on the task of semantic segmentation, where annotated synthetic data are aplenty, but annotating real data is laborious.
The first criterion, inspired by visual psychophysics, is that the map between the two image domains be phase-preserving.
The second criterion aims to leverage ecological statistics, or regularities in the scene which are manifest in any image of it, regardless of the characteristics of the illuminant or the imaging sensor.
arXiv Detail & Related papers (2020-04-10T06:58:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.