EEG-BBNet: a Hybrid Framework for Brain Biometric using Graph
Connectivity
- URL: http://arxiv.org/abs/2208.08901v1
- Date: Wed, 17 Aug 2022 10:18:22 GMT
- Title: EEG-BBNet: a Hybrid Framework for Brain Biometric using Graph
Connectivity
- Authors: Payongkit Lakhan, Nannapas Banluesombatkul, Natchaya Sricom, Korn
Surapat, Ratha Rotruchiphong, Phattarapong Sawangjai, Tohru Yagi, Tulaya
Limpiti, Theerawit Wilaiprasitporn
- Abstract summary: We present EEG-BBNet, a hybrid network which integrates convolutional neural networks (CNN) with graph convolutional neural networks (GCNN)
Our models outperform all baselines in the event-related potential (ERP) task with an average correct recognition rates up to 99.26% using intra-session data.
- Score: 1.1498015270151059
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Brain biometrics based on electroencephalography (EEG) have been used
increasingly for personal identification. Traditional machine learning
techniques as well as modern day deep learning methods have been applied with
promising results. In this paper we present EEG-BBNet, a hybrid network which
integrates convolutional neural networks (CNN) with graph convolutional neural
networks (GCNN). The benefit of the CNN in automatic feature extraction and the
capability of GCNN in learning connectivity between EEG electrodes through
graph representation are jointly exploited. We examine various connectivity
measures, namely the Euclidean distance, Pearson's correlation coefficient,
phase-locked value, phase-lag index, and Rho index. The performance of the
proposed method is assessed on a benchmark dataset consisting of various
brain-computer interface (BCI) tasks and compared to other state-of-the-art
approaches. We found that our models outperform all baselines in the
event-related potential (ERP) task with an average correct recognition rates up
to 99.26% using intra-session data. EEG-BBNet with Pearson's correlation and
RHO index provide the best classification results. In addition, our model
demonstrates greater adaptability using inter-session and inter-task data. We
also investigate the practicality of our proposed model with smaller number of
electrodes. Electrode placements over the frontal lobe region appears to be
most appropriate with minimal lost in performance.
Related papers
- EEG_RL-Net: Enhancing EEG MI Classification through Reinforcement Learning-Optimised Graph Neural Networks [7.9035081192335115]
We present the EEG_RL-Net, an enhancement to the EEG_GLT-Net framework, which incorporates the trained EEG GCN Block from EEG_GLT-Net at an adjacency matrix density of 13.39%.
The EEG_RL-Net model showcases exceptional classification performance, achieving an unprecedented average accuracy of 96.40% across 20 subjects within 25 milliseconds.
arXiv Detail & Related papers (2024-04-26T13:09:50Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - EEGSN: Towards Efficient Low-latency Decoding of EEG with Graph Spiking
Neural Networks [4.336065967298193]
A majority of neural networks (SNNs) are trained based on inductive biases that are not necessarily a good fit for several critical tasks that require low-latency and power efficiency.
Here, we propose a graph spiking neural architecture for multi-channel EEG classification (EEGS) that learns the dynamic relational information present in the distributed EEG sensors.
Our method reduced the inference computational complexity by $times 20$ compared to the state-the-art SNNs, while achieved comparable accuracy on motor execution tasks.
arXiv Detail & Related papers (2023-04-15T23:30:17Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - EEG-GNN: Graph Neural Networks for Classification of
Electroencephalogram (EEG) Signals [20.991468018187362]
Convolutional neural networks (CNN) have been frequently used to extract subject-invariant features from electroencephalogram (EEG)
We overcome this limitation by tailoring the concepts of convolution and pooling applied to 2D grid-like inputs for the functional network of electrode sites.
We develop various graph neural network (GNN) models that project electrodes onto the nodes of a graph, where the node features are represented as EEG channel samples collected over a trial, and nodes can be connected by weighted/unweighted edges.
arXiv Detail & Related papers (2021-06-16T21:19:12Z) - CNN-based Approaches For Cross-Subject Classification in Motor Imagery:
From The State-of-The-Art to DynamicNet [0.2936007114555107]
Motor imagery (MI)-based brain-computer interface (BCI) systems are being increasingly employed to provide alternative means of communication and control.
accurately classifying MI from brain signals is essential to obtain reliable BCI systems.
Deep learning approaches have started to emerge as valid alternatives to standard machine learning techniques.
arXiv Detail & Related papers (2021-05-17T14:57:13Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
We introduce a new classification system that utilizes brain connectivity with a CNN and validate its effectiveness via the emotional video classification.
The level of concentration of the brain connectivity related to the emotional property of the target video is correlated with classification performance.
arXiv Detail & Related papers (2021-01-18T13:28:08Z) - GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding
Time-resolved EEG Motor Imagery Signals [8.19994663278877]
A novel deep learning framework based on the graph convolutional neural networks (GCNs) is presented to enhance the decoding performance of raw EEG signals.
The introduced approach has been shown to converge for both personalized and group-wise predictions.
arXiv Detail & Related papers (2020-06-16T04:57:12Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.