Classical shadows of fermions with particle number symmetry
- URL: http://arxiv.org/abs/2208.08964v2
- Date: Thu, 25 Jul 2024 07:55:17 GMT
- Title: Classical shadows of fermions with particle number symmetry
- Authors: Guang Hao Low,
- Abstract summary: We provide an estimator for any $k$-RDM with $mathcalO(k2eta)$ classical complexity.
Our method, in the worst-case of half-filling, still provides a factor of $4k$ advantage in sample complexity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider classical shadows of fermion wavefunctions with $\eta$ particles occupying $n$ modes. We prove that all $k$-Reduced Density Matrices (RDMs) may be simultaneously estimated to an average variance of $\epsilon^{2}$ using at most $\binom{\eta}{k}\big(1-\frac{\eta-k}{n}\big)^{k}\frac{1+n}{1+n-k}/\epsilon^{2}$ measurements in random single-particle bases that conserve particle number, and provide an estimator for any $k$-RDM with $\mathcal{O}(k^2\eta)$ classical complexity. Our sample complexity is a super-exponential improvement over the $\mathcal{O}(\binom{n}{k}\frac{\sqrt{k}}{\epsilon^{2}})$ scaling of prior approaches as $n$ can be arbitrarily larger than $\eta$, which is common in natural problems. Our method, in the worst-case of half-filling, still provides a factor of $4^{k}$ advantage in sample complexity, and also estimates all $\eta$-reduced density matrices, applicable to estimating overlaps with all single Slater determinants, with at most $\mathcal{O}(\frac{1}{\epsilon^{2}})$ samples, which is additionally independent of $\eta$.
Related papers
- Dimension-free Private Mean Estimation for Anisotropic Distributions [55.86374912608193]
Previous private estimators on distributions over $mathRd suffer from a curse of dimensionality.
We present an algorithm whose sample complexity has improved dependence on dimension.
arXiv Detail & Related papers (2024-11-01T17:59:53Z) - Simple and Nearly-Optimal Sampling for Rank-1 Tensor Completion via Gauss-Jordan [49.1574468325115]
We revisit the sample and computational complexity of completing a rank-1 tensor in $otimes_i=1N mathbbRd$.
We present a characterization of the problem which admits an algorithm amounting to Gauss-Jordan on a pair of random linear systems.
arXiv Detail & Related papers (2024-08-10T04:26:19Z) - Measuring quantum relative entropy with finite-size effect [53.64687146666141]
We study the estimation of relative entropy $D(rho|sigma)$ when $sigma$ is known.
Our estimator attains the Cram'er-Rao type bound when the dimension $d$ is fixed.
arXiv Detail & Related papers (2024-06-25T06:07:20Z) - Estimating the Mixing Coefficients of Geometrically Ergodic Markov
Processes [5.00389879175348]
We estimate the individual $beta$-mixing coefficients of a real-valued geometrically ergodic Markov process from a single sample-path.
Naturally no density assumptions are required in this setting; the expected error rate is shown to be of order $mathcal O(log(n) n-1/2)$.
arXiv Detail & Related papers (2024-02-11T20:17:10Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Identification of Mixtures of Discrete Product Distributions in
Near-Optimal Sample and Time Complexity [6.812247730094931]
We show, for any $ngeq 2k-1$, how to achieve sample complexity and run-time complexity $(1/zeta)O(k)$.
We also extend the known lower bound of $eOmega(k)$ to match our upper bound across a broad range of $zeta$.
arXiv Detail & Related papers (2023-09-25T09:50:15Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Tight Bounds on the Hardness of Learning Simple Nonparametric Mixtures [9.053430799456587]
We study the problem of learning nonparametric distributions in a finite mixture.
We establish tight bounds on the sample complexity for learning the component distributions in such models.
arXiv Detail & Related papers (2022-03-28T23:53:48Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
We show that the eigenspectrum of $bf K$ is independent of the distribution of the i.i.d. entries of $bf w$.
We propose a novel random technique, called Ternary Random Feature (TRF)
The computation of the proposed random features requires no multiplication and a factor of $b$ less bits for storage compared to classical random features.
arXiv Detail & Related papers (2021-10-05T09:33:49Z) - Kernel Thinning [26.25415159542831]
kernel thinning is a new procedure for compressing a distribution $mathbbP$ more effectively than i.i.d. sampling or standard thinning.
We derive explicit non-asymptotic maximum mean discrepancy bounds for Gaussian, Mat'ern, and B-spline kernels.
arXiv Detail & Related papers (2021-05-12T17:56:42Z) - Non-Parametric Estimation of Manifolds from Noisy Data [1.0152838128195467]
We consider the problem of estimating a $d$ dimensional sub-manifold of $mathbbRD$ from a finite set of noisy samples.
We show that the estimation yields rates of convergence of $n-frack2k + d$ for the point estimation and $n-frack-12k + d$ for the estimation of tangent space.
arXiv Detail & Related papers (2021-05-11T02:29:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.