Identification of Mixtures of Discrete Product Distributions in
Near-Optimal Sample and Time Complexity
- URL: http://arxiv.org/abs/2309.13993v1
- Date: Mon, 25 Sep 2023 09:50:15 GMT
- Title: Identification of Mixtures of Discrete Product Distributions in
Near-Optimal Sample and Time Complexity
- Authors: Spencer L. Gordon, Erik Jahn, Bijan Mazaheri, Yuval Rabani, Leonard J.
Schulman
- Abstract summary: We show, for any $ngeq 2k-1$, how to achieve sample complexity and run-time complexity $(1/zeta)O(k)$.
We also extend the known lower bound of $eOmega(k)$ to match our upper bound across a broad range of $zeta$.
- Score: 6.812247730094931
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of identifying, from statistics, a distribution of
discrete random variables $X_1,\ldots,X_n$ that is a mixture of $k$ product
distributions. The best previous sample complexity for $n \in O(k)$ was
$(1/\zeta)^{O(k^2 \log k)}$ (under a mild separation assumption parameterized
by $\zeta$). The best known lower bound was $\exp(\Omega(k))$. It is known that
$n\geq 2k-1$ is necessary and sufficient for identification. We show, for any
$n\geq 2k-1$, how to achieve sample complexity and run-time complexity
$(1/\zeta)^{O(k)}$. We also extend the known lower bound of $e^{\Omega(k)}$ to
match our upper bound across a broad range of $\zeta$. Our results are obtained
by combining (a) a classic method for robust tensor decomposition, (b) a novel
way of bounding the condition number of key matrices called Hadamard
extensions, by studying their action only on flattened rank-1 tensors.
Related papers
- Sum-of-squares lower bounds for Non-Gaussian Component Analysis [33.80749804695003]
Non-Gaussian Component Analysis (NGCA) is the statistical task of finding a non-Gaussian direction in a high-dimensional dataset.
Here we study the complexity of NGCA in the Sum-of-Squares framework.
arXiv Detail & Related papers (2024-10-28T18:19:13Z) - Simple and Nearly-Optimal Sampling for Rank-1 Tensor Completion via Gauss-Jordan [49.1574468325115]
We revisit the sample and computational complexity of completing a rank-1 tensor in $otimes_i=1N mathbbRd$.
We present a characterization of the problem which admits an algorithm amounting to Gauss-Jordan on a pair of random linear systems.
arXiv Detail & Related papers (2024-08-10T04:26:19Z) - Average-Case Complexity of Tensor Decomposition for Low-Degree
Polynomials [93.59919600451487]
"Statistical-computational gaps" occur in many statistical inference tasks.
We consider a model for random order-3 decomposition where one component is slightly larger in norm than the rest.
We show that tensor entries can accurately estimate the largest component when $ll n3/2$ but fail to do so when $rgg n3/2$.
arXiv Detail & Related papers (2022-11-10T00:40:37Z) - Classical shadows of fermions with particle number symmetry [0.0]
We provide an estimator for any $k$-RDM with $mathcalO(k2eta)$ classical complexity.
Our method, in the worst-case of half-filling, still provides a factor of $4k$ advantage in sample complexity.
arXiv Detail & Related papers (2022-08-18T17:11:12Z) - Tight Bounds on the Hardness of Learning Simple Nonparametric Mixtures [9.053430799456587]
We study the problem of learning nonparametric distributions in a finite mixture.
We establish tight bounds on the sample complexity for learning the component distributions in such models.
arXiv Detail & Related papers (2022-03-28T23:53:48Z) - An Optimal Separation of Randomized and Quantum Query Complexity [67.19751155411075]
We prove that for every decision tree, the absolute values of the Fourier coefficients of a given order $ellsqrtbinomdell (1+log n)ell-1,$ sum to at most $cellsqrtbinomdell (1+log n)ell-1,$ where $n$ is the number of variables, $d$ is the tree depth, and $c>0$ is an absolute constant.
arXiv Detail & Related papers (2020-08-24T06:50:57Z) - The Sparse Hausdorff Moment Problem, with Application to Topic Models [5.151973524974052]
We give an algorithm for identifying a $k$-mixture using samples of $m=2k$ iid binary random variables.
It suffices to know the moments to additive accuracy $w_mincdotzetaO(k)$.
arXiv Detail & Related papers (2020-07-16T04:23:57Z) - Second-Order Information in Non-Convex Stochastic Optimization: Power
and Limitations [54.42518331209581]
We find an algorithm which finds.
epsilon$-approximate stationary point (with $|nabla F(x)|le epsilon$) using.
$(epsilon,gamma)$surimate random random points.
Our lower bounds here are novel even in the noiseless case.
arXiv Detail & Related papers (2020-06-24T04:41:43Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z) - Locally Private Hypothesis Selection [96.06118559817057]
We output a distribution from $mathcalQ$ whose total variation distance to $p$ is comparable to the best such distribution.
We show that the constraint of local differential privacy incurs an exponential increase in cost.
Our algorithms result in exponential improvements on the round complexity of previous methods.
arXiv Detail & Related papers (2020-02-21T18:30:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.