Estimating the Mixing Coefficients of Geometrically Ergodic Markov
Processes
- URL: http://arxiv.org/abs/2402.07296v1
- Date: Sun, 11 Feb 2024 20:17:10 GMT
- Title: Estimating the Mixing Coefficients of Geometrically Ergodic Markov
Processes
- Authors: Steffen Gr\"unew\"alder and Azadeh Khaleghi
- Abstract summary: We estimate the individual $beta$-mixing coefficients of a real-valued geometrically ergodic Markov process from a single sample-path.
Naturally no density assumptions are required in this setting; the expected error rate is shown to be of order $mathcal O(log(n) n-1/2)$.
- Score: 5.00389879175348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose methods to estimate the individual $\beta$-mixing coefficients of
a real-valued geometrically ergodic Markov process from a single sample-path
$X_0,X_1, \dots,X_n$. Under standard smoothness conditions on the densities,
namely, that the joint density of the pair $(X_0,X_m)$ for each $m$ lies in a
Besov space $B^s_{1,\infty}(\mathbb R^2)$ for some known $s>0$, we obtain a
rate of convergence of order $\mathcal{O}(\log(n) n^{-[s]/(2[s]+2)})$ for the
expected error of our estimator in this case\footnote{We use $[s]$ to denote
the integer part of the decomposition $s=[s]+\{s\}$ of $s \in (0,\infty)$ into
an integer term and a {\em strictly positive} remainder term $\{s\} \in
(0,1]$.}. We complement this result with a high-probability bound on the
estimation error, and further obtain analogues of these bounds in the case
where the state-space is finite. Naturally no density assumptions are required
in this setting; the expected error rate is shown to be of order $\mathcal
O(\log(n) n^{-1/2})$.
Related papers
- Dimension-free Private Mean Estimation for Anisotropic Distributions [55.86374912608193]
Previous private estimators on distributions over $mathRd suffer from a curse of dimensionality.
We present an algorithm whose sample complexity has improved dependence on dimension.
arXiv Detail & Related papers (2024-11-01T17:59:53Z) - On the $O(\frac{\sqrt{d}}{T^{1/4}})$ Convergence Rate of RMSProp and Its Momentum Extension Measured by $\ell_1$ Norm [59.65871549878937]
This paper considers the RMSProp and its momentum extension and establishes the convergence rate of $frac1Tsum_k=1T.
Our convergence rate matches the lower bound with respect to all the coefficients except the dimension $d$.
Our convergence rate can be considered to be analogous to the $frac1Tsum_k=1T.
arXiv Detail & Related papers (2024-02-01T07:21:32Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Classical shadows of fermions with particle number symmetry [0.0]
We provide an estimator for any $k$-RDM with $mathcalO(k2eta)$ classical complexity.
Our method, in the worst-case of half-filling, still provides a factor of $4k$ advantage in sample complexity.
arXiv Detail & Related papers (2022-08-18T17:11:12Z) - Unique Games hardness of Quantum Max-Cut, and a conjectured
vector-valued Borell's inequality [6.621324975749854]
We show that the noise stability of a function $f:mathbbRn to -1, 1$ is the expected value of $f(boldsymbolx) cdot f(boldsymboly)$.
We conjecture that the expected value of $langle f(boldsymbolx), f(boldsymboly)rangle$ is minimized by the function $f(x) = x_leq k / Vert x_leq k /
arXiv Detail & Related papers (2021-11-01T20:45:42Z) - Nonasymptotic one-and two-sample tests in high dimension with unknown
covariance structure [0.0]
We consider the problem of testing if $mu is $eta-close to zero, i.e. $|mu| leq eta against $|mu| geq (eta + delta)$.
The aim of this paper is to obtain nonasymptotic upper and lower bounds on the minimal separation distancedelta$ such that we can control both the Type I and Type II errors at a given level.
arXiv Detail & Related papers (2021-09-01T06:22:53Z) - Threshold Phenomena in Learning Halfspaces with Massart Noise [56.01192577666607]
We study the problem of PAC learning halfspaces on $mathbbRd$ with Massart noise under Gaussian marginals.
Our results qualitatively characterize the complexity of learning halfspaces in the Massart model.
arXiv Detail & Related papers (2021-08-19T16:16:48Z) - Non-Parametric Estimation of Manifolds from Noisy Data [1.0152838128195467]
We consider the problem of estimating a $d$ dimensional sub-manifold of $mathbbRD$ from a finite set of noisy samples.
We show that the estimation yields rates of convergence of $n-frack2k + d$ for the point estimation and $n-frack-12k + d$ for the estimation of tangent space.
arXiv Detail & Related papers (2021-05-11T02:29:33Z) - The planted matching problem: Sharp threshold and infinite-order phase
transition [25.41713098167692]
We study the problem of reconstructing a perfect matching $M*$ hidden in a randomly weighted $ntimes n$ bipartite graph.
We show that if $sqrtd B(mathcalP,mathcalQ) ge 1+epsilon$ for an arbitrarily small constant $epsilon>0$, the reconstruction error for any estimator is shown to be bounded away from $0$.
arXiv Detail & Related papers (2021-03-17T00:59:33Z) - Optimal Mean Estimation without a Variance [103.26777953032537]
We study the problem of heavy-tailed mean estimation in settings where the variance of the data-generating distribution does not exist.
We design an estimator which attains the smallest possible confidence interval as a function of $n,d,delta$.
arXiv Detail & Related papers (2020-11-24T22:39:21Z) - On the Complexity of Minimizing Convex Finite Sums Without Using the
Indices of the Individual Functions [62.01594253618911]
We exploit the finite noise structure of finite sums to derive a matching $O(n2)$-upper bound under the global oracle model.
Following a similar approach, we propose a novel adaptation of SVRG which is both emphcompatible with oracles, and achieves complexity bounds of $tildeO(n2+nsqrtL/mu)log (1/epsilon)$ and $O(nsqrtL/epsilon)$, for $mu>0$ and $mu=0$
arXiv Detail & Related papers (2020-02-09T03:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.