Demystifying Randomly Initialized Networks for Evaluating Generative
Models
- URL: http://arxiv.org/abs/2208.09218v1
- Date: Fri, 19 Aug 2022 08:43:53 GMT
- Title: Demystifying Randomly Initialized Networks for Evaluating Generative
Models
- Authors: Junghyuk Lee, Jun-Hyuk Kim, Jong-Seok Lee
- Abstract summary: Evaluation of generative models is mostly based on the comparison between the estimated distribution and the ground truth distribution in a certain feature space.
To embed samples into informative features, previous works often use convolutional neural networks optimized for classification.
In this paper, we rigorously investigate the feature space of models with random weights in comparison to that of trained models.
- Score: 28.8899914083501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evaluation of generative models is mostly based on the comparison between the
estimated distribution and the ground truth distribution in a certain feature
space. To embed samples into informative features, previous works often use
convolutional neural networks optimized for classification, which is criticized
by recent studies. Therefore, various feature spaces have been explored to
discover alternatives. Among them, a surprising approach is to use a randomly
initialized neural network for feature embedding. However, the fundamental
basis to employ the random features has not been sufficiently justified. In
this paper, we rigorously investigate the feature space of models with random
weights in comparison to that of trained models. Furthermore, we provide an
empirical evidence to choose networks for random features to obtain consistent
and reliable results. Our results indicate that the features from random
networks can evaluate generative models well similarly to those from trained
networks, and furthermore, the two types of features can be used together in a
complementary way.
Related papers
- Nonuniform random feature models using derivative information [10.239175197655266]
We propose nonuniform data-driven parameter distributions for neural network initialization based on derivative data of the function to be approximated.
We address the cases of Heaviside and ReLU activation functions, and their smooth approximations (sigmoid and softplus)
We suggest simplifications of these exact densities based on approximate derivative data in the input points that allow for very efficient sampling and lead to performance of random feature models close to optimal networks in several scenarios.
arXiv Detail & Related papers (2024-10-03T01:30:13Z) - Diffusion Random Feature Model [0.0]
We present a diffusion model-inspired deep random feature model that is interpretable.
We derive generalization bounds between the distribution of sampled data and the true distribution using properties of score matching.
We validate our findings by generating samples on the fashion MNIST dataset and instrumental audio data.
arXiv Detail & Related papers (2023-10-06T17:59:05Z) - Robust Nonparametric Hypothesis Testing to Understand Variability in
Training Neural Networks [5.8490454659691355]
We propose a new measure of closeness between classification models based on the output of the network before thresholding.
Our measure is based on a robust hypothesis-testing framework and can be adapted to other quantities derived from trained models.
arXiv Detail & Related papers (2023-10-01T01:44:35Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Representing Random Utility Choice Models with Neural Networks [0.0]
Motivated by successes of deep learning, we propose a class of neural network-based discrete choice models, called RUMnets.
RUMnets formulates the agents' random utility function using a sample average approximation.
We find that RUMnets are competitive against several choice modeling and machine learning methods in terms of accuracy on two real-world datasets.
arXiv Detail & Related papers (2022-07-26T13:12:22Z) - A Statistical-Modelling Approach to Feedforward Neural Network Model Selection [0.8287206589886881]
Feedforward neural networks (FNNs) can be viewed as non-linear regression models.
A novel model selection method is proposed using the Bayesian information criterion (BIC) for FNNs.
The choice of BIC over out-of-sample performance leads to an increased probability of recovering the true model.
arXiv Detail & Related papers (2022-07-09T11:07:04Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Toward Scalable and Unified Example-based Explanation and Outlier
Detection [128.23117182137418]
We argue for a broader adoption of prototype-based student networks capable of providing an example-based explanation for their prediction.
We show that our prototype-based networks beyond similarity kernels deliver meaningful explanations and promising outlier detection results without compromising classification accuracy.
arXiv Detail & Related papers (2020-11-11T05:58:17Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.