論文の概要: Deep Learning for Choice Modeling
- arxiv url: http://arxiv.org/abs/2208.09325v1
- Date: Fri, 19 Aug 2022 13:10:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-22 16:53:55.677512
- Title: Deep Learning for Choice Modeling
- Title(参考訳): 選択モデリングのためのディープラーニング
- Authors: Zhongze Cai, Hanzhao Wang, Kalyan Talluri, Xiaocheng Li
- Abstract要約: 我々は,機能フリーと機能ベースという2つの選択モデルに基づいて,ディープラーニングに基づく選択モデルを構築した。
本モデルでは,候補選択に対する本質的効用と,候補選択が選択確率に与える影響の両方を捉える。
- 参考スコア(独自算出の注目度): 5.173001988341294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Choice modeling has been a central topic in the study of individual
preference or utility across many fields including economics, marketing,
operations research, and psychology. While the vast majority of the literature
on choice models has been devoted to the analytical properties that lead to
managerial and policy-making insights, the existing methods to learn a choice
model from empirical data are often either computationally intractable or
sample inefficient. In this paper, we develop deep learning-based choice models
under two settings of choice modeling: (i) feature-free and (ii) feature-based.
Our model captures both the intrinsic utility for each candidate choice and the
effect that the assortment has on the choice probability. Synthetic and real
data experiments demonstrate the performances of proposed models in terms of
the recovery of the existing choice models, sample complexity, assortment
effect, architecture design, and model interpretation.
- Abstract(参考訳): 選択モデリングは、経済学、マーケティング、オペレーション研究、心理学を含む多くの分野における個人の好みや有用性の研究において中心的なトピックとなっている。
選択モデルに関する文献の大部分は、管理的および政策決定的洞察につながる分析的性質に費やされてきたが、既存の経験的データから選択モデルを学ぶ方法は、しばしば計算上難解かサンプル的非効率である。
本稿では,2つの選択モデルを用いた深層学習に基づく選択モデルを提案する。
(i)機能フリーで
(ii)機能ベース。
提案モデルは,各候補選択に対する本質的有用性と,選択確率に対する分類の影響の両方を捉える。
合成および実データ実験は、既存の選択モデルの回復、サンプルの複雑さ、配置効果、アーキテクチャ設計、モデル解釈の観点から提案されたモデルの性能を実証する。
関連論文リスト
- Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
SMOE(Sparse Mixture of Expert)モデルは、言語モデリングにおける高密度モデルに代わるスケーラブルな代替品として登場した。
本研究は,SMoEアーキテクチャの設計に関する意思決定を行うために,タスク固有のモデルプルーニングについて検討する。
適応型タスク対応プルーニング手法 UNCURL を導入し,MoE 層当たりの専門家数をオフラインで学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-02T22:35:03Z) - Subjectivity in Unsupervised Machine Learning Model Selection [2.9370710299422598]
本研究では、モデル選択に関わる主観性を調べる例として、隠れマルコフモデルを用いる。
主観性の源泉には、異なる基準とメトリクスの重要性についての異なる意見、モデルがどのように同化されるべきなのか、データセットのサイズがモデル選択にどのように影響するかについての異なる見解が含まれる。
論文 参考訳(メタデータ) (2023-09-01T01:40:58Z) - Online simulator-based experimental design for cognitive model selection [74.76661199843284]
本稿では,抽出可能な確率を伴わない計算モデルを選択する実験設計手法BOSMOSを提案する。
シミュレーション実験では,提案手法により,既存のLFI手法に比べて最大2桁の精度でモデルを選択することができることを示した。
論文 参考訳(メタデータ) (2023-03-03T21:41:01Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
既存のバイアス機能を分析し、すべてのケースに最適なモデルが存在しないことを実証します。
適切なバイアスモデルを選択することで、より洗練されたモデル設計でベースラインよりもロバスト性が得られる。
論文 参考訳(メタデータ) (2022-10-28T17:52:10Z) - A Statistical-Modelling Approach to Feedforward Neural Network Model Selection [0.8287206589886881]
フィードフォワードニューラルネットワーク(FNN)は非線形回帰モデルと見なすことができる。
FNNのためのベイズ情報基準(BIC)を用いて,新しいモデル選択法を提案する。
サンプル外性能よりもBICを選択することは、真のモデルを回復する確率を増大させる。
論文 参考訳(メタデータ) (2022-07-09T11:07:04Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
決定アルゴリズムは様々なアプリケーションで使われている。
数理モデルに頼らずにデータから調整された高度パラメトリックアーキテクチャを使用するディープラーニングアプローチが、ますます人気が高まっている。
モデルに基づく最適化とデータ中心のディープラーニングは、しばしば異なる規律とみなされる。
論文 参考訳(メタデータ) (2022-05-05T13:40:08Z) - Learning Dynamics Models for Model Predictive Agents [28.063080817465934]
モデルに基づく強化学習は、データからテクトダイナミックスモデルを学習し、そのモデルを使用して振る舞いを最適化する。
本稿では, 動的モデル学習における設計選択の役割を, 基礎構造モデルとの比較により明らかにすることを目的としている。
論文 参考訳(メタデータ) (2021-09-29T09:50:25Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Model-specific Data Subsampling with Influence Functions [37.64859614131316]
トレーニングポイントが様々な影響を持つ場合、ランダムサンプリングよりも優れたモデル固有データサブサンプリング戦略を開発する。
具体的には、影響関数を活用して、選択戦略をガイドし、理論的に証明し、我々のアプローチが素早く高品質なモデルを選択することを実証する。
論文 参考訳(メタデータ) (2020-10-20T12:10:28Z) - Feature Selection Methods for Uplift Modeling and Heterogeneous
Treatment Effect [1.349645012479288]
アップリフトモデリングは、サブグループレベルの治療効果を推定する因果学習手法である。
従来の機能選択の方法は、そのタスクには適していない。
本稿では,アップリフトモデリングのための特徴選択手法を提案する。
論文 参考訳(メタデータ) (2020-05-05T00:28:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。