Majorana Zero Modes in Fermionic Wires coupled by Aharonov-Bohm Cages
- URL: http://arxiv.org/abs/2208.09382v2
- Date: Fri, 16 Sep 2022 08:40:58 GMT
- Title: Majorana Zero Modes in Fermionic Wires coupled by Aharonov-Bohm Cages
- Authors: Niklas Tausendpfund, Sebastian Diehl, Matteo Rizzi
- Abstract summary: We devise a number-conserving scheme for the realization of Majorana Zero Modes in an interacting fermionic ladder coupled by Aharonov-Bohm cages.
A generic nearest-neighbor interaction generates the desired correlated hopping of pairs.
We demonstrate the adiabatic connection to previous models, including exactly-solvable ones, and we briefly comment on possible experimental realizations in synthetic quantum platforms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We devise a number-conserving scheme for the realization of Majorana Zero
Modes in an interacting fermionic ladder coupled by Aharonov-Bohm cages. The
latter provide an efficient mechanism to cancel single-particle hopping by
destructive interference. The crucial parity symmetry in each wire is thus
encoded in the geometry of the setup, in particular, its translation
invariance. A generic nearest-neighbor interaction generates the desired
correlated hopping of pairs. We exhibit the presence of an extended topological
region in parameter space, first in a simplified effective model via
bosonization techniques, and subsequently in a larger parameter regime with
matrix-product-states numerical simulations. We demonstrate the adiabatic
connection to previous models, including exactly-solvable ones, and we briefly
comment on possible experimental realizations in synthetic quantum platforms,
like cold atomic samples.
Related papers
- Collective Radiative Interactions in the Discrete Truncated Wigner
Approximation [0.0]
Superradiance of atomic arrays at sub-wavelength spacings has regained substantial interest.
We develop a semiclassical approach to this problem that allows to describe the coherent and dissipative many-body dynamics of interacting spins.
For small arrays we compare to exact simulations and a second order cumulant expansion.
We conclude by studying the radiative properties of a spatially extended three-dimensional, coherently driven gas.
arXiv Detail & Related papers (2023-05-31T13:11:32Z) - Simulating scalar field theories on quantum computers with limited
resources [62.997667081978825]
We present a quantum algorithm for implementing $phi4$ lattice scalar field theory on qubit computers.
The algorithm allows efficient $phi4$ state preparation for a large range of input parameters in both the normal and broken symmetry phases.
arXiv Detail & Related papers (2022-10-14T17:28:15Z) - A pseudo-fermion method for the exact description of fermionic
environments: from single-molecule electronics to Kondo resonance [0.39089069256361736]
We develop a discrete fermion approach for modelling the strong interaction of an arbitrary system interacting with continuum electronic reservoirs.
For a non-interacting single-resonant level, we benchmark our approach against an analytical solution and an exact hierachical-equations-of-motion approach.
arXiv Detail & Related papers (2022-07-12T18:18:53Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Stabilizing volume-law entangled states of fermions and qubits using
local dissipation [13.502098265779946]
We analyze a general method for the dissipative preparation and stabilization of volume-law entangled states of fermionic and qubit lattice systems in 1D.
Our ideas are compatible with a number of experimental platforms, including superconducting circuits and trapped ions.
arXiv Detail & Related papers (2021-07-29T15:47:51Z) - Solving the Bose-Hubbard model in new ways [0.0]
We introduce a new method for analysing the Bose-Hubbard model for an array of bosons with nearest neighbor interactions.
It is based on a number-theoretic implementation of the creation and annihilation operators that constitute the model.
We provide a rigorous computer assisted proof of quantum phase transitions in finite systems of this type.
arXiv Detail & Related papers (2021-06-17T08:41:37Z) - Chaos and subdiffusion in the infinite-range coupled quantum kicked
rotors [0.0]
We map the infinite-range coupled quantum kicked rotors over an infinite-range coupled interacting bosonic model.
In the thermodynamic limit the system is described by a set of coupled Gross-Pitaevskij equations equivalent to an effective nonlinear single-rotor Hamiltonian.
arXiv Detail & Related papers (2021-02-15T22:29:01Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.