Collective Radiative Interactions in the Discrete Truncated Wigner
Approximation
- URL: http://arxiv.org/abs/2305.19829v3
- Date: Mon, 13 Nov 2023 13:42:45 GMT
- Title: Collective Radiative Interactions in the Discrete Truncated Wigner
Approximation
- Authors: Christopher D. Mink and Michael Fleischhauer
- Abstract summary: Superradiance of atomic arrays at sub-wavelength spacings has regained substantial interest.
We develop a semiclassical approach to this problem that allows to describe the coherent and dissipative many-body dynamics of interacting spins.
For small arrays we compare to exact simulations and a second order cumulant expansion.
We conclude by studying the radiative properties of a spatially extended three-dimensional, coherently driven gas.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Interfaces of light and matter serve as a platform for exciting many-body
physics and photonic quantum technologies. Due to the recent experimental
realization of atomic arrays at sub-wavelength spacings, collective interaction
effects such as superradiance have regained substantial interest. Their
analytical and numerical treatment is however quite challenging. Here we
develop a semiclassical approach to this problem that allows to describe the
coherent and dissipative many-body dynamics of interacting spins while taking
into account lowest-order quantum fluctuations. For this purpose we extend the
discrete truncated Wigner approximation, originally developed for unitarily
coupled spins, to include collective, dissipative spin processes by means of
truncated correspondence rules. This maps the dynamics of the atomic ensemble
onto a set of semiclassical, numerically inexpensive stochastic differential
equations. We benchmark our method with exact results for the case of Dicke
decay, which shows excellent agreement. For small arrays we compare to exact
simulations and a second order cumulant expansion, again showing good agreement
at early times and at moderate to strong driving. We conclude by studying the
radiative properties of a spatially extended three-dimensional, coherently
driven gas and compare the coherence of the emitted light to experimental
results.
Related papers
- Directional superradiance in a driven ultracold atomic gas in free-space [0.0]
We study a dense ensemble illuminated by a strong coherent drive while interacting via dipole-dipole interactions.
Although the steady-state features some similarities to the reported superradiant to normal non-induced transition, we observe significant qualitative and quantitative differences.
We develop a simple theoretical model that explains the scaling properties by accounting for interaction-equilibrium inhomogeneous effects and spontaneous emission.
arXiv Detail & Related papers (2024-03-22T18:14:44Z) - Bardeen-Cooper-Schrieffer interaction as an infinite-range Penson-Kolb pairing mechanism [0.0]
We show that the well-known $(kuparrow, -kdownarrow)$ Bardeen-Cooper-Schrieffer interaction, when considered in real space, is equivalent to an infinite-range Penson-Kolb pairing mechanism.
We investigate the dynamics of fermionic particles confined in a ring-shaped lattice.
arXiv Detail & Related papers (2024-01-30T10:29:46Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
Entangled twin-beams generated by parametric down-conversion are among the favorite sources for imaging-oriented applications.
We propose a semi-analytic model which aims to bridge the gap between time-consuming numerical simulations and the unrealistic plane-wave pump theory.
arXiv Detail & Related papers (2023-01-18T11:29:49Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Characterizing superradiant dynamics in atomic arrays via a cumulant
expansion approach [0.0]
Ordered atomic arrays with subwavelength lattice spacing emit light collectively.
For fully inverted atomic arrays, this results in an initial burst of radiation and a fast build up of coherences between the atoms at initial times.
We benchmark the cumulant expansion approach and show that it correctly captures the cooperative dynamics resulting in superradiance.
arXiv Detail & Related papers (2022-11-21T22:49:21Z) - Higher-order mean-field theory of chiral waveguide QED [0.0]
Waveguide QED with cold atoms provides a potent platform for the study of non-equilibrium, many-body, and open-system quantum dynamics.
We apply an improved mean-field theory based on higher-order cumulant expansions to describe the experimentally relevant, but theoretically elusive, regime of weak coupling.
Our approach allows to quantify the trade-off between anti-bunching and output power in previously inaccessible parameter regimes.
arXiv Detail & Related papers (2022-07-21T12:22:41Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Driving Quantum Correlated Atom-Pairs from a Bose-Einstein Condensate [0.0]
We investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose-Einstein condensate.
A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal.
arXiv Detail & Related papers (2020-01-08T00:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.