論文の概要: Sparse Optimization for Unsupervised Extractive Summarization of Long
Documents with the Frank-Wolfe Algorithm
- arxiv url: http://arxiv.org/abs/2208.09454v1
- Date: Fri, 19 Aug 2022 17:17:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-22 17:08:18.553892
- Title: Sparse Optimization for Unsupervised Extractive Summarization of Long
Documents with the Frank-Wolfe Algorithm
- Title(参考訳): Frank-Wolfeアルゴリズムを用いた長期文書の教師なし抽出要約のためのスパース最適化
- Authors: Alicia Y. Tsai, Laurent El Ghaoui
- Abstract要約: 本稿では,特に長い文書について,教師なし抽出文書要約の問題に対処する。
我々は、教師なし問題をスパース自己回帰問題としてモデル化し、凸ノルム制約問題を用いて結果の問題を近似する。
k$文で要約を生成するには、$approx k$を実行すればよいため、非常に効率的である。
- 参考スコア(独自算出の注目度): 4.786337974720721
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the problem of unsupervised extractive document summarization,
especially for long documents. We model the unsupervised problem as a sparse
auto-regression one and approximate the resulting combinatorial problem via a
convex, norm-constrained problem. We solve it using a dedicated Frank-Wolfe
algorithm. To generate a summary with $k$ sentences, the algorithm only needs
to execute $\approx k$ iterations, making it very efficient. We explain how to
avoid explicit calculation of the full gradient and how to include sentence
embedding information. We evaluate our approach against two other unsupervised
methods using both lexical (standard) ROUGE scores, as well as semantic
(embedding-based) ones. Our method achieves better results with both datasets
and works especially well when combined with embeddings for highly paraphrased
summaries.
- Abstract(参考訳): 本稿では,特に長い文書について,教師なし抽出文書要約の問題に対処する。
我々は、教師なし問題をスパース自己回帰問題としてモデル化し、凸・ノルム制約問題を用いて結果の組合せ問題を近似する。
専用Frank-Wolfeアルゴリズムを用いて解く。
k$文で要約を生成するには、アルゴリズムは$\approx k$イテレーションを実行するだけでよく、非常に効率的である。
本稿では,全勾配の明示的な計算を避ける方法と文埋め込み情報を含める方法について述べる。
我々は,語彙(標準)ROUGEスコアと意味(埋め込みに基づく)スコアを用いて,他の2つの教師なし手法に対するアプローチを評価する。
本手法はデータセットの双方でより優れた結果を得ることができ,高度にパラフレッシュなサマリーの組込みと組み合わせると特にうまく機能する。
関連論文リスト
- A Mirror Descent-Based Algorithm for Corruption-Tolerant Distributed Gradient Descent [57.64826450787237]
本研究では, 分散勾配降下アルゴリズムの挙動を, 敵対的腐敗の有無で解析する方法を示す。
汚職耐性の分散最適化アルゴリズムを設計するために、(怠慢な)ミラー降下からアイデアをどう使うかを示す。
MNISTデータセットの線形回帰、サポートベクトル分類、ソフトマックス分類に基づく実験は、我々の理論的知見を裏付けるものである。
論文 参考訳(メタデータ) (2024-07-19T08:29:12Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
相補的な合成条件に基づく2つの難解なミラー降下アルゴリズムを導入する。
注目すべきは、どちらのアルゴリズムも、目的関数のリプシッツ定数や滑らかさに関する事前の知識なしで機能する。
本稿では,大規模半確定プログラム上での手法の効率性とロバスト性を示す。
論文 参考訳(メタデータ) (2023-06-30T08:34:29Z) - Text Summarization with Oracle Expectation [88.39032981994535]
抽出要約は、文書の中で最も重要な文を識別し、連結することによって要約を生成する。
ほとんどの要約データセットは、文書文が要約に値するかどうかを示す金のラベルを持っていない。
本稿では,ソフトな予測に基づく文ラベルを生成する,シンプルで効果的なラベル付けアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-26T14:10:08Z) - An Efficient Coarse-to-Fine Facet-Aware Unsupervised Summarization
Framework based on Semantic Blocks [27.895044398724664]
教師なし長文要約のためのC2F-FAR(Coarse-to-Fine Facet-Aware Ranking)フレームワークを提案する。
粗いレベルでは、文書をファセット対応のセマンティックブロックに分割し、無意味なブロックをフィルタリングする新しいセグメントアルゴリズムを提案する。
詳細な段階において,各ブロックで有能な文を選択し,選択した文から最終要約を抽出する。
論文 参考訳(メタデータ) (2022-08-17T12:18:36Z) - Langevin Monte Carlo for Contextual Bandits [72.00524614312002]
Langevin Monte Carlo Thompson Sampling (LMC-TS) が提案されている。
提案アルゴリズムは,文脈的帯域幅の特別な場合において,最高のトンプソンサンプリングアルゴリズムと同じサブ線形残差を達成できることを示す。
論文 参考訳(メタデータ) (2022-06-22T17:58:23Z) - Robust Sparse Mean Estimation via Sum of Squares [42.526664955704746]
本研究では,高次元スパース平均推定の問題点を,逆数外乱の$epsilon$-fractionの存在下で検討する。
我々のアルゴリズムは、サム・オブ・スクエア(Sum-of-Squares)ベースのアルゴリズムアプローチに従う。
論文 参考訳(メタデータ) (2022-06-07T16:49:54Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
多くの現実世界では、T関数の評価の予算を考えると、高価なブラックボックス関数 f の性質を推測したい。
本稿では,アルゴリズムの出力に対して相互情報を最大化するクエリを逐次選択する手法InfoBAXを提案する。
これらの問題に対してInfoBAXは、元のアルゴリズムで要求されるより500倍少ないクエリをfに使用する。
論文 参考訳(メタデータ) (2021-04-19T17:22:11Z) - An Empirical Process Approach to the Union Bound: Practical Algorithms
for Combinatorial and Linear Bandits [34.06611065493047]
本稿では、信頼度と予算設定の固定化において、純探索線形帯域問題に対する近似アルゴリズムを提案する。
サンプルの複雑性がインスタンスの幾何でスケールし、アームの数に縛られた明示的な結合を避けるアルゴリズムを提供する。
また,固定予算設定における線形帯域幅に対する最初のアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-21T00:56:33Z) - Non-Adaptive Adaptive Sampling on Turnstile Streams [57.619901304728366]
カラムサブセット選択、部分空間近似、射影クラスタリング、および空間サブリニアを$n$で使用するターンタイルストリームのボリュームに対する最初の相対エラーアルゴリズムを提供する。
我々の適応的なサンプリング手法は、様々なデータ要約問題に多くの応用をもたらしており、これは最先端を改善するか、より緩和された行列列モデルで以前に研究されただけである。
論文 参考訳(メタデータ) (2020-04-23T05:00:21Z) - Quasi-Newton Solver for Robust Non-Rigid Registration [35.66014845211251]
データフィッティングと正規化のための大域的スムーズなロバスト推定器に基づくロバストな非剛性登録のための定式化を提案する。
本稿では,L-BFGS を用いた最小二乗問題の解法に,各繰り返しを減らし,最大化最小化アルゴリズムを適用した。
論文 参考訳(メタデータ) (2020-04-09T01:45:05Z) - Efficient Algorithms for Multidimensional Segmented Regression [42.046881924063044]
多次元回帰を用いた固定設計の基本問題について検討する。
我々は任意の固定次元におけるこの問題に対する最初のサンプルと計算効率のよいアルゴリズムを提供する。
提案アルゴリズムは,多次元的条件下では新規な,単純なマージ反復手法に依存している。
論文 参考訳(メタデータ) (2020-03-24T19:39:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。