論文の概要: Graph neural networks for materials science and chemistry
- arxiv url: http://arxiv.org/abs/2208.09481v1
- Date: Fri, 5 Aug 2022 13:38:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-28 22:21:56.803086
- Title: Graph neural networks for materials science and chemistry
- Title(参考訳): 材料科学と化学のためのグラフニューラルネットワーク
- Authors: Patrick Reiser, Marlen Neubert, Andr\'e Eberhard, Luca Torresi, Chen
Zhou, Chen Shao, Houssam Metni, Clint van Hoesel, Henrik Schopmans, Timo
Sommer, Pascal Friederich
- Abstract要約: グラフニューラルネットワーク(GNN)は、機械学習モデルの最速成長クラスの1つである。
GNNは直接、分子や物質のグラフまたは構造表現に取り組んでいる。
本稿では,GNNの基本原則,広く使用されているデータセット,最先端アーキテクチャについて概説する。
- 参考スコア(独自算出の注目度): 2.2479652717640657
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning plays an increasingly important role in many areas of
chemistry and materials science, e.g. to predict materials properties, to
accelerate simulations, to design new materials, and to predict synthesis
routes of new materials. Graph neural networks (GNNs) are one of the fastest
growing classes of machine learning models. They are of particular relevance
for chemistry and materials science, as they directly work on a graph or
structural representation of molecules and materials and therefore have full
access to all relevant information required to characterize materials. In this
review article, we provide an overview of the basic principles of GNNs, widely
used datasets, and state-of-the-art architectures, followed by a discussion of
a wide range of recent applications of GNNs in chemistry and materials science,
and concluding with a road-map for the further development and application of
GNNs.
- Abstract(参考訳): 機械学習は、材料特性の予測、シミュレーションの加速、新しい材料の設計、新しい材料の合成経路の予測など、化学や材料科学の多くの分野において、ますます重要な役割を担っている。
グラフニューラルネットワーク(GNN)は、機械学習モデルの最速成長クラスの1つである。
それらは化学や材料科学に特に関係しており、直接グラフや分子や物質の構造表現に取り組んでおり、物質を特徴づけるために必要なすべての関連情報に完全にアクセスできる。
本稿では,GNNの基本原理,広く使用されているデータセット,最先端アーキテクチャについて概説するとともに,化学・材料科学におけるGNNの幅広い応用について論じ,GNNのさらなる開発と応用に向けたロードマップをまとめる。
関連論文リスト
- Improving Molecular Modeling with Geometric GNNs: an Empirical Study [56.52346265722167]
本稿では,異なる標準化手法,(2)グラフ作成戦略,(3)補助的なタスクが性能,拡張性,対称性の強制に与える影響に焦点をあてる。
本研究の目的は,分子モデリングタスクに最適なモデリングコンポーネントの選択を研究者に案内することである。
論文 参考訳(メタデータ) (2024-07-11T09:04:12Z) - A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems [87.30652640973317]
原子系の計算モデリングの最近の進歩は、これらを3次元ユークリッド空間のノードとして埋め込まれた原子を含む幾何学的グラフとして表現している。
Geometric Graph Neural Networksは、タンパク質構造予測から分子シミュレーション、物質生成まで、幅広い応用を駆動する機械学習アーキテクチャとして好まれている。
本稿では,3次元原子システムのための幾何学的GNNの分野について,包括的で自己完結した概要を述べる。
論文 参考訳(メタデータ) (2023-12-12T18:44:19Z) - MatChat: A Large Language Model and Application Service Platform for
Materials Science [18.55541324347915]
我々は、LLaMA2-7Bモデルのパワーを活用し、13,878個の構造化材料知識データを組み込んだ学習プロセスを通じて、LLaMA2-7Bモデルを強化する。
MatChatという名前のこの専門的なAIモデルは、無機物質合成経路の予測に焦点を当てている。
MatChatは現在オンラインでアクセス可能であり、モデルとアプリケーションフレームワークの両方をオープンソースとして利用できる。
論文 参考訳(メタデータ) (2023-10-11T05:11:46Z) - MolGrapher: Graph-based Visual Recognition of Chemical Structures [50.13749978547401]
化学構造を視覚的に認識するためにMolGrapherを導入する。
すべての候補原子と結合をノードとして扱い、それらをグラフ化する。
グラフニューラルネットワークを用いてグラフ内の原子と結合ノードを分類する。
論文 参考訳(メタデータ) (2023-08-23T16:16:11Z) - Materials Informatics: An Algorithmic Design Rule [0.0]
材料情報学は、材料科学研究において「第4のパラダイム」である。
有機半導体のエニグマを材料情報化アプローチにより研究した。
論文 参考訳(メタデータ) (2023-05-05T18:55:32Z) - Interdisciplinary Discovery of Nanomaterials Based on Convolutional
Neural Networks [6.350788459498522]
我々はCNNを用いて、エネルギー関連出版物におけるナノマテリアルおよび合成法に関する貴重な実験に基づく情報を発見する。
最初のシステムであるTextMasterは、テキストから意見を抽出し、それらを課題と機会に分類し、それぞれ94%と92%の精度で達成する。
第2のシステムであるGraphMasterは、98.3%の分類精度と4.3%のデータ抽出平均平方誤差を持つ出版物から表や数字を抽出する。
論文 参考訳(メタデータ) (2022-12-06T07:51:51Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Formula graph self-attention network for representation-domain
independent materials discovery [3.67735033631952]
本稿では,理論のみと構造に基づく材料記述子の両方を統一する公式グラフの新たな概念を提案する。
本稿では,式グラフに類似した自己注意統合GNNを開発し,提案アーキテクチャが2つの領域間で伝達可能な材料埋め込みを生成することを示す。
我々のモデルは、構造に依存しない従来のGNNよりも大幅に優れています。
論文 参考訳(メタデータ) (2022-01-14T19:49:45Z) - Scientific Language Models for Biomedical Knowledge Base Completion: An
Empirical Study [62.376800537374024]
我々は,KG の完成に向けた科学的 LM の研究を行い,生物医学的リンク予測を強化するために,その潜在知識を活用できるかどうかを探る。
LMモデルとKG埋め込みモデルを統合し,各入力例をいずれかのモデルに割り当てることを学ぶルータ法を用いて,性能を大幅に向上させる。
論文 参考訳(メタデータ) (2021-06-17T17:55:33Z) - Orbital Graph Convolutional Neural Network for Material Property
Prediction [0.0]
本稿では,結晶グラフ畳み込みニューラルネットワークフレームワークであるOrbital Graph Convolutional Neural Network (OGCNN)を提案する。
OGCNNには、材料特性を堅牢な方法で学習する原子軌道相互作用機能が含まれている。
本研究では, このモデルの性能について, 様々な特性を予測するために, 広範囲の結晶材料データを用いて検討した。
論文 参考訳(メタデータ) (2020-08-14T15:22:22Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
無機材料のバンドギャップを予測できるいくつかの異なるグラフ畳み込みネットワークを提示し、比較する。
モデルは、それぞれの軌道自体の情報と相互の相互作用の2つの異なる特徴を組み込むように開発されている。
その結果,クロスバリデーションにより予測精度が期待できることがわかった。
論文 参考訳(メタデータ) (2020-05-27T13:32:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。