論文の概要: Improving Molecular Modeling with Geometric GNNs: an Empirical Study
- arxiv url: http://arxiv.org/abs/2407.08313v1
- Date: Thu, 11 Jul 2024 09:04:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 18:09:27.590639
- Title: Improving Molecular Modeling with Geometric GNNs: an Empirical Study
- Title(参考訳): 幾何学的GNNによる分子モデルの改良 : 実証的研究
- Authors: Ali Ramlaoui, Théo Saulus, Basile Terver, Victor Schmidt, David Rolnick, Fragkiskos D. Malliaros, Alexandre Duval,
- Abstract要約: 本稿では,異なる標準化手法,(2)グラフ作成戦略,(3)補助的なタスクが性能,拡張性,対称性の強制に与える影響に焦点をあてる。
本研究の目的は,分子モデリングタスクに最適なモデリングコンポーネントの選択を研究者に案内することである。
- 参考スコア(独自算出の注目度): 56.52346265722167
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rapid advancements in machine learning (ML) are transforming materials science by significantly speeding up material property calculations. However, the proliferation of ML approaches has made it challenging for scientists to keep up with the most promising techniques. This paper presents an empirical study on Geometric Graph Neural Networks for 3D atomic systems, focusing on the impact of different (1) canonicalization methods, (2) graph creation strategies, and (3) auxiliary tasks, on performance, scalability and symmetry enforcement. Our findings and insights aim to guide researchers in selecting optimal modeling components for molecular modeling tasks.
- Abstract(参考訳): 機械学習(ML)の急速な進歩は、材料特性計算を著しく高速化することで、材料科学を変革している。
しかし、MLアプローチの普及により、科学者たちは最も有望な技術に追随することが難しくなった。
本稿では,(1)正準化法,(2)グラフ作成戦略,(3)補助的タスクが性能,スケーラビリティ,対称性に与える影響に着目した3次元原子システムのための幾何学的グラフニューラルネットワークに関する実証的研究を行った。
本研究の目的は,分子モデリングタスクに最適なモデリングコンポーネントの選択を研究者に案内することである。
関連論文リスト
- Sculpting Molecules in 3D: A Flexible Substructure Aware Framework for
Text-Oriented Molecular Optimization [11.336868279763804]
本稿では,多モードガイダンス生成/最適化タスクとして定式化することで,逆設計問題に対処する革新的な手法を提案する。
提案手法は,分子生成・最適化タスク,すなわち3DToMoloの実装のためのテクスチャ構造アライメント対称拡散フレームワークを含む。
3つのガイダンス生成設定での試行は、最先端の手法と比較して、ヒット生成性能が優れていることを示している。
論文 参考訳(メタデータ) (2024-03-06T03:15:25Z) - A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems [87.30652640973317]
原子系の計算モデリングの最近の進歩は、これらを3次元ユークリッド空間のノードとして埋め込まれた原子を含む幾何学的グラフとして表現している。
Geometric Graph Neural Networksは、タンパク質構造予測から分子シミュレーション、物質生成まで、幅広い応用を駆動する機械学習アーキテクチャとして好まれている。
本稿では,3次元原子システムのための幾何学的GNNの分野について,包括的で自己完結した概要を述べる。
論文 参考訳(メタデータ) (2023-12-12T18:44:19Z) - Learning Over Molecular Conformer Ensembles: Datasets and Benchmarks [45.9401235464876]
コンフォーマーアンサンブルを用いた学習の可能性を徹底的に評価するための,最初のMoleculAR Conformer Ensemble Learningベンチマークを導入する。
その結果,コンバータ空間からの直接学習は,様々なタスクやモデルの性能を向上させることができることがわかった。
論文 参考訳(メタデータ) (2023-09-29T20:06:46Z) - Symmetry-Informed Geometric Representation for Molecules, Proteins, and
Crystalline Materials [66.14337835284628]
幾何戦略の有効性をベンチマークできるGeom3Dというプラットフォームを提案する。
Geom3Dは16の高度な対称性インフォームド幾何表現モデルと46の多様なデータセット上の14の幾何事前学習方法を含んでいる。
論文 参考訳(メタデータ) (2023-06-15T05:37:25Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
データ変換による任意のモデルE(3)-同変や不変化を実現するために,フレームアラグリング(SFA)に依存したフレキシブルなフレームワークを導入する。
本手法の有効性を理論的および実験的に証明し, 材料モデリングにおける精度と計算スケーラビリティを実証する。
論文 参考訳(メタデータ) (2023-04-28T21:48:31Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
人工知能,特に深層学習(DL)の最近の進歩を概観する。
ハイブリッドおよび純粋機械学習(ML)の手法について論じる。
AIの歴史と限界は、特に古典の誤解や誤解を指摘し、議論され、議論される。
論文 参考訳(メタデータ) (2022-12-18T02:03:00Z) - ChemRL-GEM: Geometry Enhanced Molecular Representation Learning for
Property Prediction [25.49976851499949]
化学表現学習のための新しい幾何強化分子表現学習法(GEM)を提案する。
まず、分子内の原子、結合、結合角を同時にモデル化する幾何学に基づくGNNアーキテクチャを設計する。
考案されたGNNアーキテクチャの上に,空間知識を学習するための幾何レベルの自己教師型学習戦略を提案する。
論文 参考訳(メタデータ) (2021-06-11T02:35:53Z) - Augmenting Molecular Deep Generative Models with Topological Data
Analysis Representations [21.237758981760784]
分子のトポロジカルデータ解析(TDA)表現を付加したSMILES変分自動エンコーダ(VAE)を提案する。
実験の結果, このTDA拡張により, SMILES VAEは3次元幾何学と電子特性の複雑な関係を捉えることができることがわかった。
論文 参考訳(メタデータ) (2021-06-08T15:49:21Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
分子グラフからの分子の3Dコンホメーラーアンサンブルの予測は、化学情報学と薬物発見の領域において重要な役割を担っている。
既存の生成モデルは、重要な分子幾何学的要素のモデリングの欠如を含むいくつかの欠点がある。
エンド・ツー・エンド、非自己回帰、SE(3)不変の機械学習手法であるGeoMolを提案し、3Dコンバータを生成する。
論文 参考訳(メタデータ) (2021-06-08T14:17:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。