Quantum Field Theories, Topological Materials, and Topological Quantum
Computing
- URL: http://arxiv.org/abs/2208.09707v1
- Date: Sat, 20 Aug 2022 15:12:44 GMT
- Title: Quantum Field Theories, Topological Materials, and Topological Quantum
Computing
- Authors: Muhammad Ilyas
- Abstract summary: A quantum computer can perform exponentially faster than its classical counterpart.
Topology and knot theory, geometric phases, topological materials, topological quantum field theories, recoupling theory, and category theory are discussed.
- Score: 3.553493344868414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A quantum computer can perform exponentially faster than its classical
counterpart. It works on the principle of superposition. But due to the
decoherence effect, the superposition of a quantum state gets destroyed by the
interaction with the environment. It is a real challenge to completely isolate
a quantum system to make it free of decoherence. This problem can be
circumvented by the use of topological quantum phases of matter. These phases
have quasiparticles excitations called anyons. The anyons are charge-flux
composites and show exotic fractional statistics. When the order of exchange
matters, then the anyons are called non-Abelian anyons. Majorana fermions in
topological superconductors and quasiparticles in some quantum Hall states are
non-Abelian anyons. Such topological phases of matter have a ground state
degeneracy. The fusion of two or more non-Abelian anyons can result in a
superposition of several anyons. The topological quantum gates are implemented
by braiding and fusion of the non-Abelian anyons. The fault-tolerance is
achieved through the topological degrees of freedom of anyons. Such degrees of
freedom are non-local, hence inaccessible to the local perturbations. Ternary
logic gates are more compact than their binary counterparts and naturally arise
in a type of anyonic model called the metaplectic anyons. The mathematical
model, for the fusion and braiding matrices of metaplectic anyons, is the
quantum deformation of the recoupling theory. In this dissertation, we gave
comprehensive background of topological quantum computation. Topology and knot
theory, geometric phases, topological materials, topological quantum field
theories, recoupling theory, and category theory are discussed. We proposed
that the existing quantum ternary arithmetic gates can be realized by braiding
and topological charge measurement of the metaplectic anyons.
Related papers
- Universal quantum computation using Ising anyons from a non-semisimple Topological Quantum Field Theory [0.058331173224054456]
We propose a framework for topological quantum computation using newly discovered non-semisimple analogs of topological quantum field theories in 2+1 dimensions.
We show that the non-semisimple theory introduces new anyon types that extend the Ising framework.
arXiv Detail & Related papers (2024-10-18T21:03:07Z) - An ontological description for relativistic, massive bosons [0.0]
Locality holds for the quantum theory, and seems to be fully obeyed also by the classical treatment.
We do discuss extensively the distinction between the quantum treatment and the classical one, even though they produce exactly the same equations mathematically.
It is suggested to apply this theory for real time quantum model simulations.
arXiv Detail & Related papers (2023-06-16T14:53:02Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Non-Abelian braiding of graph vertices in a superconducting processor [144.97755321680464]
Indistinguishability of particles is a fundamental principle of quantum mechanics.
braiding of non-Abelian anyons causes rotations in a space of degenerate wavefunctions.
We experimentally verify the fusion rules of the anyons and braid them to realize their statistics.
arXiv Detail & Related papers (2022-10-19T02:28:44Z) - Ternary Logic Design in Topological Quantum Computing [3.0079490585515343]
A quantum computer can perform exponentially faster than its classical counterpart.
The superposition of a quantum state gets destroyed by the interaction with the environment.
The fault-tolerance is achieved through the topological degrees of freedom of anyons.
arXiv Detail & Related papers (2022-04-03T05:35:59Z) - No-signalling constrains quantum computation with indefinite causal
structure [45.279573215172285]
We develop a formalism for quantum computation with indefinite causal structures.
We characterize the computational structure of higher order quantum maps.
We prove that these rules, which have a computational and information-theoretic nature, are determined by the more physical notion of the signalling relations between the quantum systems.
arXiv Detail & Related papers (2022-02-21T13:43:50Z) - The Ultraviolet Structure of Quantum Field Theories. Part 1: Quantum
Mechanics [0.0]
This paper fires the opening salvo in the systematic construction of the lattice-continuum correspondence.
The focus will be on quantum field theory in (0+1)D, i.e. quantum mechanics.
arXiv Detail & Related papers (2021-05-24T18:00:06Z) - Novel quantum phases on graphs using abelian gauge theory [0.0]
We build a class of frustration-free and gapped Hamiltonians based on discrete abelian gauge groups.
The resulting models have a ground state degeneracy that can be either a topological invariant or an extensive quantity.
We analyze excitations and identify anyon-like excitations that account for the topological entanglement entropy.
arXiv Detail & Related papers (2021-04-14T13:46:10Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.