Ternary Logic Design in Topological Quantum Computing
- URL: http://arxiv.org/abs/2204.01000v3
- Date: Tue, 27 Sep 2022 14:36:28 GMT
- Title: Ternary Logic Design in Topological Quantum Computing
- Authors: Muhammad Ilyas, Shawn Cui, Marek Perkowski
- Abstract summary: A quantum computer can perform exponentially faster than its classical counterpart.
The superposition of a quantum state gets destroyed by the interaction with the environment.
The fault-tolerance is achieved through the topological degrees of freedom of anyons.
- Score: 3.0079490585515343
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A quantum computer can perform exponentially faster than its classical
counterpart. It works on the principle of superposition. But due to the
decoherence effect, the superposition of a quantum state gets destroyed by the
interaction with the environment. It is a real challenge to completely isolate
a quantum system to make it free of decoherence. This problem can be
circumvented by the use of topological quantum phases of matter. These phases
have quasiparticles excitations called anyons. The anyons are charge-flux
composites and show exotic fractional statistics. When the order of exchange
matters, then the anyons are called non-Abelian anyons. Majorana fermions in
topological superconductors and quasiparticles in some quantum Hall states are
non-Abelian anyons. Such topological phases of matter have a ground state
degeneracy. The fusion of two or more non-Abelian anyons can result in a
superposition of several anyons. The topological quantum gates are implemented
by braiding and fusion of the non-Abelian anyons. The fault-tolerance is
achieved through the topological degrees of freedom of anyons. Such degrees of
freedom are non-local, hence inaccessible to the local perturbations. In this
paper, the Hilbert space for a topological qubit is discussed. The Ising and
Fibonacci anyonic models for binary gates are briefly given. Ternary logic
gates are more compact than their binary counterparts and naturally arise in a
type of anyonic model called the metaplectic anyons. The mathematical model,
for the fusion and braiding matrices of metaplectic anyons, is the quantum
deformation of the recoupling theory. We proposed that the existing quantum
ternary arithmetic gates can be realized by braiding and topological charge
measurement of the metaplectic anyons.
Related papers
- Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Non-Abelian braiding of graph vertices in a superconducting processor [144.97755321680464]
Indistinguishability of particles is a fundamental principle of quantum mechanics.
braiding of non-Abelian anyons causes rotations in a space of degenerate wavefunctions.
We experimentally verify the fusion rules of the anyons and braid them to realize their statistics.
arXiv Detail & Related papers (2022-10-19T02:28:44Z) - Topological Quantum Computation on Supersymmetric Spin Chains [0.0]
Quantum gates built out of braid group elements form the building blocks of topological quantum computation.
We show that the fusion spaces of anyonic systems can be precisely mapped to the product state zero modes of certain Nicolai-like supersymmetric spin chains.
arXiv Detail & Related papers (2022-09-08T13:52:10Z) - Quantum Field Theories, Topological Materials, and Topological Quantum
Computing [3.553493344868414]
A quantum computer can perform exponentially faster than its classical counterpart.
Topology and knot theory, geometric phases, topological materials, topological quantum field theories, recoupling theory, and category theory are discussed.
arXiv Detail & Related papers (2022-08-20T15:12:44Z) - Quantum Computing with $\mathbb{Z}_2$ Abelian anyon system [0.0]
Topological quantum computers manipulate topological defects with exotic exchange statistics called anyons.
We report a topological quantum computer prototype based on $mathbb$ abelian anyon system.
arXiv Detail & Related papers (2022-03-29T04:59:18Z) - Novel quantum phases on graphs using abelian gauge theory [0.0]
We build a class of frustration-free and gapped Hamiltonians based on discrete abelian gauge groups.
The resulting models have a ground state degeneracy that can be either a topological invariant or an extensive quantity.
We analyze excitations and identify anyon-like excitations that account for the topological entanglement entropy.
arXiv Detail & Related papers (2021-04-14T13:46:10Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.