論文の概要: Multilayer deep feature extraction for visual texture recognition
- arxiv url: http://arxiv.org/abs/2208.10044v1
- Date: Mon, 22 Aug 2022 03:53:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-23 13:28:37.270286
- Title: Multilayer deep feature extraction for visual texture recognition
- Title(参考訳): 視覚テクスチャ認識のための多層深層特徴抽出
- Authors: Lucas O. Lyra, Antonio Elias Fabris, Joao B. Florindo
- Abstract要約: 本稿では,テクスチャ分類における畳み込みニューラルネットワークの精度向上に着目した。
事前訓練されたニューラルネットワークの複数の畳み込み層から特徴を抽出し、フィッシャーベクトルを用いてそのような特徴を集約する。
本手法は,ブラジルの植物種識別の実践的課題と同様に,ベンチマークデータセットのテクスチャ分類における有効性を検証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional neural networks have shown successful results in image
classification achieving real-time results superior to the human level.
However, texture images still pose some challenge to these models due, for
example, to the limited availability of data for training in several problems
where these images appear, high inter-class similarity, the absence of a global
viewpoint of the object represented, and others. In this context, the present
paper is focused on improving the accuracy of convolutional neural networks in
texture classification. This is done by extracting features from multiple
convolutional layers of a pretrained neural network and aggregating such
features using Fisher vector. The reason for using features from earlier
convolutional layers is obtaining information that is less domain specific. We
verify the effectiveness of our method on texture classification of benchmark
datasets, as well as on a practical task of Brazilian plant species
identification. In both scenarios, Fisher vectors calculated on multiple layers
outperform state-of-art methods, confirming that early convolutional layers
provide important information about the texture image for classification.
- Abstract(参考訳): 畳み込みニューラルネットワークは、人間のレベルよりも優れたリアルタイム結果を達成する画像分類に成功している。
しかし、テクスチャ画像は、これらの画像が現れるいくつかの問題におけるトレーニング用データの可用性の制限、クラス間の類似度の高さ、表現対象のグローバルな視点の欠如など、これらのモデルにはまだいくつかの課題がある。
本稿では,テクスチャ分類における畳み込みニューラルネットワークの精度向上に着目した。
これは、事前学習されたニューラルネットワークの複数の畳み込み層から特徴を抽出し、フィッシャーベクトルを用いてそれらの特徴を集約することで行われる。
初期の畳み込み層から機能を利用する理由はドメイン固有でない情報を得るためである。
ブラジルの植物種同定の実践的課題として,ベンチマークデータセットのテクスチャ分類における本手法の有効性を検証する。
どちらのシナリオにおいても、複数の層で計算されたフィッシャーベクトルは最先端の手法よりも優れており、初期の畳み込み層は分類のためのテクスチャイメージに関する重要な情報を提供する。
関連論文リスト
- Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
本研究は,2層以上の類似性ニューロンを組み込んだ多層神経回路網について述べる。
また,回避すべき画像領域に割り当てられる反プロトタイプ点の利用についても検討した。
論文 参考訳(メタデータ) (2023-08-28T12:55:13Z) - Why do CNNs excel at feature extraction? A mathematical explanation [53.807657273043446]
実世界のデータセットに似た画像を生成するのに使用できる特徴抽出に基づく画像分類の新しいモデルを提案する。
本研究では,特徴の存在を検知する一方向線形関数を構築し,畳み込みネットワークで実現可能であることを示す。
論文 参考訳(メタデータ) (2023-07-03T10:41:34Z) - Hidden Classification Layers: Enhancing linear separability between
classes in neural networks layers [0.0]
トレーニング手法の深層ネットワーク性能への影響について検討する。
本稿では,全てのネットワークレイヤの出力を含むエラー関数を誘導するニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-09T10:52:49Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet Pre-trained Deep Neural Network (DNN)は、効果的な画像品質評価(IQA)モデルを構築するための顕著な転送性を示す。
我々は,事前学習DNN機能のみに基づく新しいフル参照IQA(FR-IQA)モデルを開発した。
5つの標準IQAデータセット上で,提案した品質モデルの優位性を示すため,包括的実験を行った。
論文 参考訳(メタデータ) (2022-11-09T14:57:27Z) - Genetic Programming-Based Evolutionary Deep Learning for Data-Efficient
Image Classification [3.9310727060473476]
本稿では,データ効率のよい画像分類のための遺伝的プログラミングに基づく進化的深層学習手法を提案する。
この新しいアプローチは、画像領域と分類領域の両方から多くの重要な演算子を使用して、変数長モデルを自動的に進化させることができる。
フレキシブルな多層表現により、新しいアプローチは、タスクごとに浅いモデルや深いモデルやツリーを自動的に構築できる。
論文 参考訳(メタデータ) (2022-09-27T08:10:16Z) - VisGraphNet: a complex network interpretation of convolutional neural
features [6.50413414010073]
ニューラルネットワークの特徴マップをモデル化するための可視性グラフの提案と検討を行う。
この研究は、元のデータよりもこれらのグラフによって提供される別の視点によって動機付けられている。
論文 参考訳(メタデータ) (2021-08-27T20:21:04Z) - Convolutional Neural Networks from Image Markers [62.997667081978825]
特徴 画像マーカーからの学習(FLIM)は、ごく少数の画像でユーザーが描画したストロークから、バックプロパゲーションのない畳み込みフィルタを推定するために最近提案されました。
本稿では、フルコネクテッド層に対してFLIMを拡張し、異なる画像分類問題について実証する。
その結果、FLIMベースの畳み込みニューラルネットワークは、バックプロパゲーションによってゼロから訓練された同じアーキテクチャを上回ります。
論文 参考訳(メタデータ) (2020-12-15T22:58:23Z) - A new approach to descriptors generation for image retrieval by
analyzing activations of deep neural network layers [43.77224853200986]
本稿では,ディープニューラルネットワークを用いたコンテンツベース画像検索作業における記述子構築の問題点について考察する。
ネットワークの畳み込み部分のニューロンの総数は多く、その大部分が最終分類決定にほとんど影響を与えないことが知られている。
本稿では,最も重要なニューロン活性化を抽出し,その情報を利用して効果的な記述子を構築する新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-13T18:53:10Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
トランスファーラーニングは、訓練済みのディープニューラルネットワークを画像認識タスクに新しいドメインに適用するための強力な方法論である。
本研究では,非逆学習モデルよりも逆学習モデルの方が優れていることを示す。
論文 参考訳(メタデータ) (2020-07-11T22:48:42Z) - Learning Local Complex Features using Randomized Neural Networks for
Texture Analysis [0.1474723404975345]
テクスチャ解析のための学習手法と複雑ネットワーク(CN)理論を組み合わせた新しい手法を提案する。
この方法はCNの表現能力を利用してテクスチャイメージを有向ネットワークとしてモデル化する。
このニューラルネットワークは、単一の隠蔽層を持ち、高速学習アルゴリズムを使用して、テクスチャのキャラクタリゼーションのためにローカルなCNパターンを学習することができる。
論文 参考訳(メタデータ) (2020-07-10T23:18:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。