論文の概要: Recent Advances in Text-to-SQL: A Survey of What We Have and What We
Expect
- arxiv url: http://arxiv.org/abs/2208.10099v1
- Date: Mon, 22 Aug 2022 07:18:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-23 13:05:22.933748
- Title: Recent Advances in Text-to-SQL: A Survey of What We Have and What We
Expect
- Title(参考訳): Text-to-SQLの最近の進歩 - 私たちが持っているもの、期待するものについての調査
- Authors: Naihao Deng, Yulong Chen, Yue Zhang
- Abstract要約: テキスト・トゥ・オブは自然言語処理とデータベース・コミュニティの両方から注目を集めている。
我々は、データセット、メソッド、評価のためのテキスト・トゥ・オブの最近の進歩についてレビューする。
この調査が,既存の作業への迅速なアクセスと将来の研究のモチベーションに役立てられることを期待しています。
- 参考スコア(独自算出の注目度): 12.445150614650801
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Text-to-SQL has attracted attention from both the natural language processing
and database communities because of its ability to convert the semantics in
natural language into SQL queries and its practical application in building
natural language interfaces to database systems. The major challenges in
text-to-SQL lie in encoding the meaning of natural utterances, decoding to SQL
queries, and translating the semantics between these two forms. These
challenges have been addressed to different extents by the recent advances.
However, there is still a lack of comprehensive surveys for this task. To this
end, we review recent progress on text-to-SQL for datasets, methods, and
evaluation and provide this systematic survey, addressing the aforementioned
challenges and discussing potential future directions. We hope that this survey
can serve as quick access to existing work and motivate future research.
- Abstract(参考訳): Text-to-SQLは、自然言語のセマンティクスをSQLクエリに変換する能力と、自然言語インターフェイスをデータベースシステムに構築する実践的応用によって、自然言語処理とデータベースコミュニティの両方から注目を集めている。
テキストからsqlへの大きな課題は、自然発話の意味をエンコードし、sqlクエリにデコードし、これら2つの形式間の意味を翻訳することにある。
これらの課題は、最近の進歩によって異なる程度に対処されてきた。
しかし、このタスクには包括的調査の欠如が残っている。
この目的のために,データセット,手法,評価のためのテキストからsqlへの最近の進歩を概観し,この体系的な調査を行い,上記の課題に取り組み,今後の方向性について検討する。
この調査が,既存の作業への迅速なアクセスと将来の研究のモチベーションに役立てられることを期待しています。
関連論文リスト
- AMBROSIA: A Benchmark for Parsing Ambiguous Questions into Database Queries [56.82807063333088]
我々は,新たなベンチマークであるAMBROSIAを導入し,テキスト・ツー・オープン・プログラムの開発を促進することを期待する。
私たちのデータセットには、3種類のあいまいさ(スコープのあいまいさ、アタッチメントのあいまいさ、あいまいさ)を示す質問が含まれている。
いずれの場合も、データベースのコンテキストが提供されてもあいまいさは持続する。
これは、スクラッチからデータベースを制御して生成する、新しいアプローチによって実現される。
論文 参考訳(メタデータ) (2024-06-27T10:43:04Z) - Next-Generation Database Interfaces: A Survey of LLM-based Text-to-SQL [15.75829309721909]
自然言語の質問(text-to-)から正確なsqlを生成することは、長年にわたる課題である。
PLMはテキスト・ツー・タスクに利用され、有望な性能を実現している。
近年,大規模言語モデル (LLM) は自然言語理解において重要な機能を示している。
論文 参考訳(メタデータ) (2024-06-12T17:13:17Z) - Decoupling SQL Query Hardness Parsing for Text-to-SQL [2.30258928355895]
本稿では,問合せ難易度解析の分離に基づくテキスト対結合のための革新的なフレームワークを提案する。
このフレームワークは、質問やスキーマを分析することで、クエリの難しさに基づいて、Text-to-coupleタスクを分離し、マルチハーネスタスクを単一ハーネスチャレンジに単純化する。
論文 参考訳(メタデータ) (2023-12-11T07:20:46Z) - Natural Language Interfaces for Tabular Data Querying and Visualization: A Survey [30.836162812277085]
大規模言語モデル(LLM)の台頭はこの分野をさらに進歩させ、自然言語処理技術のための新たな道を開いた。
本稿では,これらのインターフェースの基礎となる基本概念と技術を紹介し,セマンティック解析に特に重点を置いている。
この中には、LSMの影響を深く掘り下げ、その強み、制限、将来の改善の可能性を強調している。
論文 参考訳(メタデータ) (2023-10-27T05:01:20Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - Can LLM Already Serve as A Database Interface? A BIg Bench for
Large-Scale Database Grounded Text-to-SQLs [89.68522473384522]
テキストから効率のよいタスクをベースとした大規模データベースのための大規模なベンチマークであるBirdを紹介します。
データベースの値に重点を置いていると、汚いデータベースコンテンツに対する新たな課題が浮き彫りになる。
最も効果的なテキストから効率のよいモデルであるChatGPTでさえ、実行精度はわずか40.08%である。
論文 参考訳(メタデータ) (2023-05-04T19:02:29Z) - A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future
Directions [102.8606542189429]
テキストからコーパスへのパースの目的は、自然言語(NL)質問をデータベースが提供するエビデンスに基づいて、対応する構造化クエリ言語()に変換することである。
ディープニューラルネットワークは、入力NL質問から出力クエリへのマッピング関数を自動的に学習するニューラルジェネレーションモデルによって、このタスクを大幅に進歩させた。
論文 参考訳(メタデータ) (2022-08-29T14:24:13Z) - Mobile App Tasks with Iterative Feedback (MoTIF): Addressing Task
Feasibility in Interactive Visual Environments [54.405920619915655]
これまで最大数のインタラクティブ環境向けに自然言語コマンドを用いたデータセットであるMoTIF(Iterative Feedback)を用いたモバイルアプリタスクを紹介します。
MoTIFは、満足できないインタラクティブ環境のための自然言語リクエストを最初に含んでいる。
初期実現可能性分類実験を行い、より豊かな視覚言語表現の必要性を検証し、f1スコア37.3まで到達した。
論文 参考訳(メタデータ) (2021-04-17T14:48:02Z) - "What Do You Mean by That?" A Parser-Independent Interactive Approach
for Enhancing Text-to-SQL [49.85635994436742]
ループ内に人間を包含し,複数質問を用いてユーザと対話する,新規非依存型対話型アプローチ(PIIA)を提案する。
PIIAは、シミュレーションと人的評価の両方を用いて、限られたインタラクションターンでテキストとドメインのパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2020-11-09T02:14:33Z) - Towards a Natural Language Query Processing System [0.0]
本稿では,自然言語クエリインタフェースとバックエンド関係データベースの設計と開発について報告する。
この研究の斬新さは、自然言語クエリを構造化クエリ言語に変換するために必要なメタデータを格納するために、グラフデータベースを中間層として定義することにある。
サンプルクエリの翻訳結果は90%の精度で得られた。
論文 参考訳(メタデータ) (2020-09-25T19:52:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。