Latent Neural Stochastic Differential Equations for Change Point
Detection
- URL: http://arxiv.org/abs/2208.10317v2
- Date: Wed, 4 Oct 2023 10:47:58 GMT
- Title: Latent Neural Stochastic Differential Equations for Change Point
Detection
- Authors: Artem Ryzhikov, Mikhail Hushchyn and Denis Derkach
- Abstract summary: We present a novel change point detection algorithm based on Latent Neural Differential Equations (SDE)
Our method learns a non-linear deep learning transformation of the process into a latent space and estimates a SDE that describes its evolution over time.
The algorithm uses the likelihood ratio of the learned processes in different timestamps to find change points of the process.
- Score: 0.6445605125467574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated analysis of complex systems based on multiple readouts remains a
challenge. Change point detection algorithms are aimed to locating abrupt
changes in the time series behaviour of a process. In this paper, we present a
novel change point detection algorithm based on Latent Neural Stochastic
Differential Equations (SDE). Our method learns a non-linear deep learning
transformation of the process into a latent space and estimates a SDE that
describes its evolution over time. The algorithm uses the likelihood ratio of
the learned stochastic processes in different timestamps to find change points
of the process. We demonstrate the detection capabilities and performance of
our algorithm on synthetic and real-world datasets. The proposed method
outperforms the state-of-the-art algorithms on the majority of our experiments.
Related papers
- Variational Neural Stochastic Differential Equations with Change Points [4.692174333076032]
We explore modeling change points in time-series data using neural differential equations (neural SDEs)
We propose a novel model formulation and training procedure based on the variational autoencoder (VAE) framework for modeling time-series as a neural SDE.
We present an empirical evaluation that demonstrates the expressive power of our proposed model, showing that it can effectively model both classical parametric SDEs and some real datasets with distribution shifts.
arXiv Detail & Related papers (2024-11-01T14:46:17Z) - Neural Stochastic Differential Equations with Change Points: A
Generative Adversarial Approach [5.408169633844698]
We propose a change point detection algorithm for time series modeled as neural SDEs.
The proposed method jointly learns the unknown change points and the parameters of distinct neural SDE models corresponding to each change point.
arXiv Detail & Related papers (2023-12-20T16:16:29Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
We propose alternatives to the commonly used finite differences-based method.
We evaluate these methods in terms of applicability to problems, similar to the real ones, and their ability to ensure the convergence of equation discovery algorithms.
arXiv Detail & Related papers (2023-11-09T23:32:06Z) - Entropic Neural Optimal Transport via Diffusion Processes [105.34822201378763]
We propose a novel neural algorithm for the fundamental problem of computing the entropic optimal transport (EOT) plan between continuous probability distributions.
Our algorithm is based on the saddle point reformulation of the dynamic version of EOT which is known as the Schr"odinger Bridge problem.
In contrast to the prior methods for large-scale EOT, our algorithm is end-to-end and consists of a single learning step.
arXiv Detail & Related papers (2022-11-02T14:35:13Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - Variational Inference for Continuous-Time Switching Dynamical Systems [29.984955043675157]
We present a model based on an Markov jump process modulating a subordinated diffusion process.
We develop a new continuous-time variational inference algorithm.
We extensively evaluate our algorithm under the model assumption and for real-world examples.
arXiv Detail & Related papers (2021-09-29T15:19:51Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
Change point detection (CPD) aims to locate abrupt property changes in time series data.
Recent CPD methods demonstrated the potential of using deep learning techniques, but often lack the ability to identify more subtle changes in the autocorrelation statistics of the signal.
We employ an autoencoder-based methodology with a novel loss function, through which the used autoencoders learn a partially time-invariant representation that is tailored for CPD.
arXiv Detail & Related papers (2020-08-21T15:03:21Z) - Distributed Value Function Approximation for Collaborative Multi-Agent
Reinforcement Learning [2.7071541526963805]
We propose several novel distributed gradient-based temporal difference algorithms for multi-agent off-policy learning.
The proposed algorithms differ by their form, definition of eligibility traces, selection of time scales and the way of incorporating consensus iterations.
It is demonstrated how the adopted methodology can be applied to temporal-difference algorithms under weaker information structure constraints.
arXiv Detail & Related papers (2020-06-18T11:46:09Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
We describe the algorithm for the mathematical equations discovery from the given observations data.
The algorithm combines genetic programming with the sparse regression.
It could be used for governing analytical equation discovery as well as for partial differential equations (PDE) discovery.
arXiv Detail & Related papers (2020-04-03T17:21:57Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
We study the problem of efficient exploration in order to learn an accurate model of an environment, modeled as a Markov decision process (MDP)
We show that our Markov-based algorithm outperforms both our original algorithm and the maximum entropy algorithm in the small sample regime.
arXiv Detail & Related papers (2020-03-06T16:17:24Z) - Generalization of Change-Point Detection in Time Series Data Based on
Direct Density Ratio Estimation [1.929039244357139]
We show how existing algorithms can be generalized using various binary classification and regression models.
The algorithms are tested on several synthetic and real-world datasets.
arXiv Detail & Related papers (2020-01-17T15:45:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.