Variational Neural Stochastic Differential Equations with Change Points
- URL: http://arxiv.org/abs/2411.00635v1
- Date: Fri, 01 Nov 2024 14:46:17 GMT
- Title: Variational Neural Stochastic Differential Equations with Change Points
- Authors: Yousef El-Laham, Zhongchang Sun, Haibei Zhu, Tucker Balch, Svitlana Vyetrenko,
- Abstract summary: We explore modeling change points in time-series data using neural differential equations (neural SDEs)
We propose a novel model formulation and training procedure based on the variational autoencoder (VAE) framework for modeling time-series as a neural SDE.
We present an empirical evaluation that demonstrates the expressive power of our proposed model, showing that it can effectively model both classical parametric SDEs and some real datasets with distribution shifts.
- Score: 4.692174333076032
- License:
- Abstract: In this work, we explore modeling change points in time-series data using neural stochastic differential equations (neural SDEs). We propose a novel model formulation and training procedure based on the variational autoencoder (VAE) framework for modeling time-series as a neural SDE. Unlike existing algorithms training neural SDEs as VAEs, our proposed algorithm only necessitates a Gaussian prior of the initial state of the latent stochastic process, rather than a Wiener process prior on the entire latent stochastic process. We develop two methodologies for modeling and estimating change points in time-series data with distribution shifts. Our iterative algorithm alternates between updating neural SDE parameters and updating the change points based on either a maximum likelihood-based approach or a change point detection algorithm using the sequential likelihood ratio test. We provide a theoretical analysis of this proposed change point detection scheme. Finally, we present an empirical evaluation that demonstrates the expressive power of our proposed model, showing that it can effectively model both classical parametric SDEs and some real datasets with distribution shifts.
Related papers
- SPDE priors for uncertainty quantification of end-to-end neural data
assimilation schemes [4.213142548113385]
Recent advances in the deep learning community enables to adress this problem as neural architecture embedding data assimilation variational framework.
In this work, we draw from SPDE-based Processes to estimate prior models able to handle non-stationary covariances in both space and time.
Our neural variational scheme is modified to embed an augmented state formulation with both state SPDE parametrization to estimate.
arXiv Detail & Related papers (2024-02-02T19:18:12Z) - Neural Stochastic Differential Equations with Change Points: A
Generative Adversarial Approach [5.408169633844698]
We propose a change point detection algorithm for time series modeled as neural SDEs.
The proposed method jointly learns the unknown change points and the parameters of distinct neural SDE models corresponding to each change point.
arXiv Detail & Related papers (2023-12-20T16:16:29Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
The proposed algorithm is a distributed Bayesian filtering task for finite-state hidden Markov models.
It can be used for sequential state estimation, as well as for modeling opinion formation over social networks under dynamic environments.
arXiv Detail & Related papers (2022-12-05T19:40:17Z) - Latent Neural Stochastic Differential Equations for Change Point
Detection [0.6445605125467574]
We present a novel change point detection algorithm based on Latent Neural Differential Equations (SDE)
Our method learns a non-linear deep learning transformation of the process into a latent space and estimates a SDE that describes its evolution over time.
The algorithm uses the likelihood ratio of the learned processes in different timestamps to find change points of the process.
arXiv Detail & Related papers (2022-08-22T13:53:13Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Continuous-time stochastic gradient descent for optimizing over the
stationary distribution of stochastic differential equations [7.65995376636176]
We develop a new continuous-time gradient descent method for optimizing over the stationary distribution oficity differential equation (SDE) models.
We rigorously prove convergence of the online forward propagation algorithm for linear SDE models and present its numerical results for nonlinear examples.
arXiv Detail & Related papers (2022-02-14T11:45:22Z) - Variational Inference for Continuous-Time Switching Dynamical Systems [29.984955043675157]
We present a model based on an Markov jump process modulating a subordinated diffusion process.
We develop a new continuous-time variational inference algorithm.
We extensively evaluate our algorithm under the model assumption and for real-world examples.
arXiv Detail & Related papers (2021-09-29T15:19:51Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Score-Based Generative Modeling through Stochastic Differential
Equations [114.39209003111723]
We present a differential equation that transforms a complex data distribution to a known prior distribution by injecting noise.
A corresponding reverse-time SDE transforms the prior distribution back into the data distribution by slowly removing the noise.
By leveraging advances in score-based generative modeling, we can accurately estimate these scores with neural networks.
We demonstrate high fidelity generation of 1024 x 1024 images for the first time from a score-based generative model.
arXiv Detail & Related papers (2020-11-26T19:39:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.