論文の概要: Mix-Pooling Strategy for Attention Mechanism
- arxiv url: http://arxiv.org/abs/2208.10322v1
- Date: Mon, 22 Aug 2022 14:01:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-23 13:51:45.617305
- Title: Mix-Pooling Strategy for Attention Mechanism
- Title(参考訳): 注意機構のための混合プール戦略
- Authors: Shanshan Zhong, Wushao Wen, Jinghui Qin
- Abstract要約: 我々は,グローバルな最大プールとグローバルなミニプールに基づく自己適応型プーリング戦略を採用した,単純かつ効果的な自己アテンションモジュールSPENetを提案する。
SPENetの有効性は、広く使われているベンチマークデータセットと一般的な自己注意ネットワークに関する広範な実験によって実証されている。
- 参考スコア(独自算出の注目度): 3.8992324495848356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently many effective self-attention modules are proposed to boot the model
performance by exploiting the internal information of convolutional neural
networks in computer vision. In general, many previous works ignore considering
the design of the pooling strategy of the self-attention mechanism since they
adopt the global average pooling for granted, which hinders the further
improvement of the performance of the self-attention mechanism. However, we
empirically find and verify a phenomenon that the simple linear combination of
global max-pooling and global min-pooling can produce pooling strategies that
match or exceed the performance of global average pooling. Based on this
empirical observation, we propose a simple-yet-effective self-attention module
SPENet, which adopts a self-adaptive pooling strategy based on global
max-pooling and global min-pooling and a lightweight module for producing the
attention map. The effectiveness of SPENet is demonstrated by extensive
experiments on widely used benchmark datasets and popular self-attention
networks.
- Abstract(参考訳): 近年,コンピュータビジョンにおける畳み込みニューラルネットワークの内部情報を活用することで,モデル性能を起動する効果的な自己認識モジュールが多数提案されている。
概して、グローバル平均プーリングを採用することにより、自己保持機構の性能がさらに向上することを妨げるため、自己保持機構のプーリング戦略の設計を無視する作業も数多く行われている。
しかし,大域的マックスプールと大域的ミンプールの単純な線形結合が,大域的平均プール性能に匹敵する,あるいは超えたプール戦略をもたらす現象を実証する。
この経験的観察に基づいて,グローバルマックスプールとグローバルミンプールに基づく自己適応型プーリング戦略と,アテンションマップを作成するための軽量モジュールを採用した,簡便かつ効果的なセルフアテンションモジュールspenetを提案する。
SPENetの有効性は、広く使われているベンチマークデータセットと一般的な自己注意ネットワークに関する広範な実験によって実証されている。
関連論文リスト
- LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
本稿では,自己注意ネットワークのためのパラメータ効率の高いディープアンサンブル手法であるLoRA-Ensembleを紹介する。
全メンバー間で重みを共有できる1つの事前学習型自己注意ネットワークを利用することで、注意投影のために、メンバー固有の低ランク行列を訓練する。
提案手法は明示的なアンサンブルよりも優れたキャリブレーションを示し,様々な予測タスクやデータセットに対して類似あるいは良好な精度を実現する。
論文 参考訳(メタデータ) (2024-05-23T11:10:32Z) - AMMUNet: Multi-Scale Attention Map Merging for Remote Sensing Image Segmentation [4.618389486337933]
マルチスケールアテンションマップをマージするUNetベースのフレームワークであるAMMUNetを提案する。
提案するAMMMは,マルチスケールアテンションマップを固定マスクテンプレートを用いた統一表現に効果的に結合する。
提案手法は,Vayhingenデータセットでは75.48%,Potsdamデータセットでは77.90%という顕著な平均交叉(mIoU)を達成した。
論文 参考訳(メタデータ) (2024-04-20T15:23:15Z) - MCA: Moment Channel Attention Networks [10.780493635885225]
ニューラルネットワーク内の特徴写像の統計モーメントについて検討する。
本研究は,モデルキャパシティ向上における高次モーメントの重要性を明らかにする。
モーメントチャネル注意(MCA)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-04T04:02:59Z) - Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape [59.841889495864386]
フェデレートラーニング(FL)では、グローバルサーバの協調の下で、ローカルクライアントのクラスタがチェアリングされる。
クライアントは自身のオプティマに過度に適合する傾向にあり、グローバルな目標から非常に逸脱する。
tt Family FedSMOOは、グローバルな目的に対する局所的な最適性を保証するために動的正規化器を採用する。
理論解析により, tt Family FedSMOO は, 低境界一般化による高速$mathcalO (1/T)$収束率を達成することが示された。
論文 参考訳(メタデータ) (2023-05-19T10:47:44Z) - USER: Unified Semantic Enhancement with Momentum Contrast for Image-Text
Retrieval [115.28586222748478]
Image-Text Retrieval (ITR) は、与えられたクエリに意味のあるターゲットインスタンスを、他のモダリティから検索することを目的としている。
既存のアプローチは通常、2つの大きな制限に悩まされる。
論文 参考訳(メタデータ) (2023-01-17T12:42:58Z) - A Generic Shared Attention Mechanism for Various Backbone Neural Networks [53.36677373145012]
自己注意モジュール(SAM)は、異なる層にまたがる強い相関した注意マップを生成する。
Dense-and-Implicit Attention (DIA)はSAMをレイヤ間で共有し、長期間のメモリモジュールを使用する。
我々のシンプルで効果的なDIAは、様々なネットワークバックボーンを一貫して拡張できます。
論文 参考訳(メタデータ) (2022-10-27T13:24:08Z) - Self-supervised Heterogeneous Graph Pre-training Based on Structural
Clustering [20.985559149384795]
SHGP(Self-supervised Heterogeneous Graph Pre-training approach)を提案する。
肯定的な例や否定的な例を生成する必要はない。
最先端の教師なしベースラインや半教師なしベースラインよりも優れている。
論文 参考訳(メタデータ) (2022-10-19T10:55:48Z) - Deep Attention-guided Graph Clustering with Dual Self-supervision [49.040136530379094]
デュアル・セルフ・スーパービジョン(DAGC)を用いたディープアテンション誘導グラフクラスタリング法を提案する。
我々は,三重項Kulback-Leibler分散損失を持つソフトな自己スーパービジョン戦略と,擬似的な監督損失を持つハードな自己スーパービジョン戦略からなる二重自己スーパービジョンソリューションを開発する。
提案手法は6つのベンチマークデータセットにおける最先端の手法より一貫して優れている。
論文 参考訳(メタデータ) (2021-11-10T06:53:03Z) - Self-Attention for Audio Super-Resolution [0.0]
畳み込みと自己認識を組み合わせた超高解像度オーディオのためのネットワークアーキテクチャを提案する。
Attention-based Feature-Wise Linear Modulation (AFiLM) は、畳み込みモデルの活性化を変調するために、リカレントニューラルネットワークの代わりに自己アテンションメカニズムを使用する。
論文 参考訳(メタデータ) (2021-08-26T08:05:07Z) - Bayesian Attention Modules [65.52970388117923]
実装や最適化が容易な,スケーラブルな注目バージョンを提案する。
本実験は,提案手法が対応するベースラインに対して一貫した改善をもたらすことを示す。
論文 参考訳(メタデータ) (2020-10-20T20:30:55Z) - Hybrid Multiple Attention Network for Semantic Segmentation in Aerial
Images [24.35779077001839]
グローバルな相関関係を適応的に捉えるために,Hybrid Multiple Attention Network (HMANet) という新しいアテンションベースのフレームワークを提案する。
本稿では,機能的冗長性を低減し,自己注意機構の効率を向上させるため,単純で効果的な領域シャッフルアテンション(RSA)モジュールを提案する。
論文 参考訳(メタデータ) (2020-01-09T07:47:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。