Survey of Machine Learning Techniques To Predict Heartbeat Arrhythmias
- URL: http://arxiv.org/abs/2208.10463v1
- Date: Mon, 22 Aug 2022 17:33:59 GMT
- Title: Survey of Machine Learning Techniques To Predict Heartbeat Arrhythmias
- Authors: Samuel Armstrong
- Abstract summary: Machine learning techniques may not be feasible for real-time analysis of data pulled from live hospital feeds.
In this project, different machine learning techniques are compared to find one that provides not only high accuracy but also low latency and memory overhead to be used in real-world health care systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many works in biomedical computer science research use machine learning
techniques to give accurate results. However, these techniques may not be
feasible for real-time analysis of data pulled from live hospital feeds. In
this project, different machine learning techniques are compared from various
sources to find one that provides not only high accuracy but also low latency
and memory overhead to be used in real-world health care systems.
Related papers
- The Impact of Ontology on the Prediction of Cardiovascular Disease Compared to Machine Learning Algorithms [0.0]
This paper compares and reviews the most prominent machine learning algorithms, as well as the ontology-based Machine Learning classification.
The findings are assessed using performance measures generated from the confusion matrix, such as F-Measure, Accuracy, Recall, and Precision.
arXiv Detail & Related papers (2024-05-30T18:40:27Z) - Recent advancement in Disease Diagnostic using machine learning:
Systematic survey of decades, comparisons, and challenges [0.0]
Pattern recognition and machine learning in the biomedical area promise to increase the precision of disease detection and diagnosis.
This review article examines machine-learning algorithms for detecting diseases, including hepatitis, diabetes, liver disease, dengue fever, and heart disease.
arXiv Detail & Related papers (2023-07-31T16:35:35Z) - Computer Vision on X-ray Data in Industrial Production and Security
Applications: A survey [89.45221564651145]
This survey reviews the recent research on using computer vision and machine learning for X-ray analysis in industrial production and security applications.
It covers the applications, techniques, evaluation metrics, datasets, and performance comparison of those techniques on publicly available datasets.
arXiv Detail & Related papers (2022-11-10T13:37:36Z) - Collaborative Machine Learning-Driven Internet of Medical Things -- A
Systematic Literature Review [0.0]
The growing adoption of IoT devices for healthcare has enabled researchers to build intelligence using all the data produced by these devices.
Monitoring and diagnosing health have been the two most common scenarios where such devices have proven beneficial.
Achieving high prediction accuracy was a top priority initially, but the focus has slowly shifted to efficiency and higher throughput.
arXiv Detail & Related papers (2022-07-13T12:28:17Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
Both politics and pandemics have recently provided ample motivation for the development of machine learning-enabled disinformation (a.k.a. fake news) detection algorithms.
Existing literature has focused primarily on the fully-automated case, but the resulting techniques cannot reliably detect disinformation on the varied topics, sources, and time scales required for military applications.
By leveraging an already-available analyst as a human-in-the-loop, canonical machine learning techniques of sentiment analysis, aspect-based sentiment analysis, and stance detection become plausible methods to use for a partially-automated disinformation detection system.
arXiv Detail & Related papers (2021-11-09T13:30:34Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - A Ternary Bi-Directional LSTM Classification for Brain Activation
Pattern Recognition Using fNIRS [0.15229257192293197]
Functional near-infrared spectroscopy (fNIRS) is a non-invasive, low-cost method used to study the brain's blood flow pattern.
The proposed system uses a Bi-Directional LSTM based deep learning architecture for task classification.
arXiv Detail & Related papers (2021-01-14T22:21:15Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
In hospitals, data are siloed to specific information systems that make the same information available under different modalities.
This offers unique opportunities to obtain and use at train-time those multiple views of the same information that might not always be available at test-time.
We propose an innovative framework that makes the most of available data by learning good representations of a multi-modal input that are resilient to modality dropping at test-time.
arXiv Detail & Related papers (2020-10-20T20:05:35Z) - Medical Instrument Detection in Ultrasound-Guided Interventions: A
Review [74.22397862400177]
This article reviews medical instrument detection methods in the ultrasound-guided intervention.
First, we present a comprehensive review of instrument detection methodologies, which include traditional non-data-driven methods and data-driven methods.
We discuss the main clinical applications of medical instrument detection in ultrasound, including anesthesia, biopsy, prostate brachytherapy, and cardiac catheterization.
arXiv Detail & Related papers (2020-07-09T13:50:18Z) - Searching for Efficient Architecture for Instrument Segmentation in
Robotic Surgery [58.63306322525082]
Most applications rely on accurate real-time segmentation of high-resolution surgical images.
We design a light-weight and highly-efficient deep residual architecture which is tuned to perform real-time inference of high-resolution images.
arXiv Detail & Related papers (2020-07-08T21:38:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.