論文の概要: Targeted Advertising on Social Networks Using Online Variational Tensor
Regression
- arxiv url: http://arxiv.org/abs/2208.10627v2
- Date: Thu, 25 Aug 2022 14:34:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-26 11:23:35.605656
- Title: Targeted Advertising on Social Networks Using Online Variational Tensor
Regression
- Title(参考訳): オンライン変動テンソル回帰を用いたソーシャルネットワーク上のターゲット広告
- Authors: Tsuyoshi Id\'e, Keerthiram Murugesan, Djallel Bouneffouf, Naoki Abe
- Abstract要約: 我々は、オンラインターゲティング広告のための最初の文脈的盗賊フレームワークであると考えるものを提案する。
提案するフレームワークは,多モードテンソルの形で,任意の特徴ベクトルに対応するように設計されている。
提案したUCBアルゴリズムは,ベンチマークによる影響タスクの大幅な改善を実現することを実証的に確認する。
- 参考スコア(独自算出の注目度): 19.586412285513962
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper is concerned with online targeted advertising on social networks.
The main technical task we address is to estimate the activation probability
for user pairs, which quantifies the influence one user may have on another
towards purchasing decisions. This is a challenging task because one marketing
episode typically involves a multitude of marketing campaigns/strategies of
different products for highly diverse customers. In this paper, we propose what
we believe is the first tensor-based contextual bandit framework for online
targeted advertising. The proposed framework is designed to accommodate any
number of feature vectors in the form of multi-mode tensor, thereby enabling to
capture the heterogeneity that may exist over user preferences, products, and
campaign strategies in a unified manner. To handle inter-dependency of tensor
modes, we introduce an online variational algorithm with a mean-field
approximation. We empirically confirm that the proposed TensorUCB algorithm
achieves a significant improvement in influence maximization tasks over the
benchmarks, which is attributable to its capability of capturing the
user-product heterogeneity.
- Abstract(参考訳): 本稿では,ソーシャルネットワーク上でのオンラインターゲティング広告について述べる。
私たちが取り組んでいる主な技術的タスクは、ユーザペアのアクティベーション確率を見積もることです。
1つのマーケティングエピソードには、非常に多様な顧客のために、さまざまな製品のマーケティングキャンペーンや戦略が伴うため、これは難しい作業です。
本稿では,オンラインターゲティング広告のためのテンソルベースのコンテキスト・バンディット・フレームワークとして最初のものを提案する。
提案フレームワークは,複数の特徴ベクトルをマルチモードテンソル形式で対応させることで,ユーザの選好や製品,キャンペーン戦略を越えて存在する不均一性を統一的に捉えることができるように設計されている。
テンソルモードの相互依存を扱うために,平均場近似を用いたオンライン変分アルゴリズムを導入する。
提案したTensorUCBアルゴリズムは,ユーザ生成の不均一性を捕捉する能力に起因して,ベンチマークに対する影響の最大化タスクを大幅に改善することを確認した。
関連論文リスト
- Maximizing the Success Probability of Policy Allocations in Online
Systems [5.485872703839928]
本稿では,個々の入札要求ではなく,ユーザタイムラインのレベルでの問題を検討する。
ユーザに対してポリシーを最適に割り当てるために、典型的な複数の処理割り当て手法は、knapsackのような問題を解決する。
本稿では,政策アロケーションの探索を目的としたSuccessProMaxアルゴリズムについて紹介する。
論文 参考訳(メタデータ) (2023-12-26T10:55:33Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
本稿では,相互モダリティ最適化スキームにおける敵攻撃を生成する新しい手法を提案する。
我々の手法は最先端の攻撃方法より優れており、プラグイン・アンド・プレイ・ソリューションとして容易にデプロイできる。
論文 参考訳(メタデータ) (2023-12-20T05:06:01Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
本研究の目的は, 細粒度製品カテゴリを対象とした, 弱制御型マルチモーダル・インスタンスレベルの製品検索である。
まず、Product1Mデータセットをコントリビュートし、2つの実際のインスタンスレベルの検索タスクを定義します。
我々は、マルチモーダルデータから重要な概念情報を組み込むことができるより効果的なクロスモーダルモデルを訓練するために活用する。
論文 参考訳(メタデータ) (2022-06-17T15:40:45Z) - Byzantine-Robust Online and Offline Distributed Reinforcement Learning [60.970950468309056]
本稿では,複数のエージェントが環境を探索し,その経験を中央サーバを通じて伝達する分散強化学習環境について考察する。
エージェントの$alpha$-fractionは敵対的であり、任意の偽情報を報告することができる。
我々は、これらの対立エージェントの存在下で、マルコフ決定プロセスの根底にある準最適政策を特定することを模索する。
論文 参考訳(メタデータ) (2022-06-01T00:44:53Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
本稿では,ユーザの嗜好モデルを強化することで,カスケードサイズ予測を促進する新しいフレームワークを提案する。
エンド・ツー・エンドの手法により,ユーザの情報拡散プロセスがより適応的で正確になる。
論文 参考訳(メタデータ) (2022-04-18T09:25:06Z) - Evaluating Deep Vs. Wide & Deep Learners As Contextual Bandits For
Personalized Email Promo Recommendations [1.1213676742918772]
パーソナライゼーションにより、企業は過去のインタラクションから顧客の好みを学ぶことができる。
我々は、いくつかの選択肢から与えられた顧客に対する最適なプロモーションオファーを予測する問題は、文脈的盗聴の問題であると考えている。
論文 参考訳(メタデータ) (2022-01-31T23:26:17Z) - Contextual Bandits for Advertising Campaigns: A Diffusion-Model
Independent Approach (Extended Version) [73.59962178534361]
拡散ネットワークや情報伝達の仕方を決定するモデルについてはほとんど知られていないと考えられる影響問題について検討する。
この設定では、キャンペーンの実行中に主要な拡散パラメータを学習するために探索-探索アプローチが使用できる。
本稿では,2つの文脈的マルチアーム・バンディットの手法と,インフルエンサーの残りのポテンシャルに対する上限について比較する。
論文 参考訳(メタデータ) (2022-01-13T22:06:10Z) - A framework for massive scale personalized promotion [18.12992386307048]
消費者向けプラットフォームを構築するテクノロジー企業は、大規模なユーザー人口にアクセスできるかもしれない。
定量化インセンティブによるプロモーションは、このようなプラットフォーム上でアクティブユーザを増やすための一般的なアプローチとなっている。
本稿では,大規模プロモーションキャンペーンのROIを最適化する実用的な2段階フレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-27T03:03:18Z) - DCAP: Deep Cross Attentional Product Network for User Response
Prediction [20.17934000984361]
我々はDCAP(Deep Cross Attentional Product Network)という新しいアーキテクチャを提案する。
DCAPは、高階機能相互作用をベクトルレベルで明示的にモデリングするクロスネットワークの利点を維持します。
提案モデルは容易に実装でき,並行して訓練できる。
論文 参考訳(メタデータ) (2021-05-18T16:27:20Z) - Learning to Infer User Hidden States for Online Sequential Advertising [52.169666997331724]
本稿では,これらの問題に対処するディープインテントシーケンス広告(DISA)手法を提案する。
解釈可能性の鍵となる部分は、消費者の購入意図を理解することである。
論文 参考訳(メタデータ) (2020-09-03T05:12:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。