論文の概要: Transferable and Forecastable User Targeting Foundation Model
- arxiv url: http://arxiv.org/abs/2412.12468v2
- Date: Thu, 20 Feb 2025 14:57:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 17:43:40.006819
- Title: Transferable and Forecastable User Targeting Foundation Model
- Title(参考訳): 転送可能および予測可能なユーザターゲット基礎モデル
- Authors: Bin Dou, Baokun Wang, Yun Zhu, Xiaotong Lin, Yike Xu, Xiaorui Huang, Yang Chen, Yun Liu, Shaoshuai Han, Yongchao Liu, Tianyi Zhang, Yu Cheng, Weiqiang Wang, Chuntao Hong,
- Abstract要約: 本稿では,ファウンデーションモデルであるFOUNDを提案する。
本フレームワークはヘテロジニアスなマルチシナリオユーザデータを統合し,要求入力をターゲットとしたワンセンスデータと整合する。
このアプローチは、クロスドメインな現実世界のユーザターゲットシナリオにおいて、既存のベースラインを大幅に上回る。
- 参考スコア(独自算出の注目度): 37.50233807898246
- License:
- Abstract: User targeting, the process of selecting targeted users from a pool of candidates for non-expert marketers, has garnered substantial attention with the advancements in digital marketing. However, existing user targeting methods encounter two significant challenges: (i) Poor cross-domain and cross-scenario transferability and generalization, and (ii) Insufficient forecastability in real-world applications. These limitations hinder their applicability across diverse industrial scenarios. In this work, we propose FOUND, an industrial-grade, transferable, and forecastable user targeting foundation model. To enhance cross-domain transferability, our framework integrates heterogeneous multi-scenario user data, aligning them with one-sentence targeting demand inputs through contrastive pre-training. For improved forecastability, the text description of each user is derived based on anticipated future behaviors, while user representations are constructed from historical information. Experimental results demonstrate that our approach significantly outperforms existing baselines in cross-domain, real-world user targeting scenarios, showcasing the superior capabilities of FOUND. Moreover, our method has been successfully deployed on the Alipay platform and is widely utilized across various scenarios.
- Abstract(参考訳): 非熟練マーケターの候補からターゲットユーザーを選択するプロセスであるユーザターゲティングは、デジタルマーケティングの進歩によって大きな注目を集めている。
しかし、既存のユーザターゲティングメソッドは2つの大きな課題に直面している。
一 クロスドメイン及びクロスシナリオの転送可能性及び一般化の低さ
(II)現実世界の応用における予測可能性の低下。
これらの制限は、様々な産業シナリオにおける適用性を妨げている。
本研究では,ファウンデーションモデルであるFOUNDを提案する。
クロスドメイン転送性を高めるため,このフレームワークは異質なマルチシナリオユーザデータを統合し,コントラスト事前学習を通じて要求入力をターゲットとした1文と整合する。
予測可能性の向上のために、ユーザ毎のテキスト記述は予測される将来の行動に基づいて導出され、ユーザ表現は歴史的情報から構築される。
実験の結果,本手法は,ドメイン間,実世界のユーザターゲットシナリオにおいて,既存のベースラインを著しく上回り,FOUNDの優れた機能を示すことがわかった。
さらに,この手法はAlipayプラットフォーム上でのデプロイに成功しており,様々なシナリオで広く利用されている。
関連論文リスト
- New User Event Prediction Through the Lens of Causal Inference [20.676353189313737]
新規ユーザのための新しい離散イベント予測フレームワークを提案する。
提案手法は,カテゴリを知る必要のない新規ユーザに対して,バイアスのない予測を提供する。
数値シミュレーションと実世界の2つの応用を用いて,提案手法の優れた性能を実証する。
論文 参考訳(メタデータ) (2024-07-08T05:35:54Z) - Cross-domain Transfer of Valence Preferences via a Meta-optimization Approach [17.545983294377958]
CVPMはメタラーニングと自己教師型学習のハイブリッドアーキテクチャとして、ドメイン間の関心伝達を形式化する。
ユーザの好みに対する深い洞察を得て、差別化されたエンコーダを使って分布を学習する。
特に、各ユーザのマッピングを共通の変換とパーソナライズされたバイアスの2つの部分として扱い、そこでは、パーソナライズされたバイアスを生成するネットワークがメタラーナーによって出力される。
論文 参考訳(メタデータ) (2024-06-24T10:02:24Z) - Pre-trained Recommender Systems: A Causal Debiasing Perspective [19.712997823535066]
本研究では,異なるドメインから抽出した汎用ユーザ・イテムインタラクションデータをトレーニングすることで,ユニバーサルインタラクションパターンをキャプチャする汎用レコメンデータを開発する。
実験により,提案モデルにより,ゼロショットと少数ショットの学習環境での推薦性能が大幅に向上する可能性が示唆された。
論文 参考訳(メタデータ) (2023-10-30T03:37:32Z) - Deep Multimodal Fusion for Generalizable Person Re-identification [15.250738959921872]
DMF(ディープ・マルチモーダル・フュージョン)は、個人再識別タスクの一般的なシナリオのためのディープ・マルチモーダル・フュージョン・ネットワークである。
事前学習段階における特徴表現学習を支援するために、リッチな意味知識が導入される。
実世界の分散アライメントのための事前訓練されたモデルを微調整するために、現実的なデータセットが採用されている。
論文 参考訳(メタデータ) (2022-11-02T07:42:48Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - In the Eye of the Beholder: Robust Prediction with Causal User Modeling [27.294341513692164]
データ分布の変化に頑健な関係予測のための学習フレームワークを提案する。
私たちのキーとなる観察は、ユーザがどのように環境を慎重に知覚するかを考慮し、堅牢性を得ることができることです。
論文 参考訳(メタデータ) (2022-06-01T11:33:57Z) - Federated Multi-Target Domain Adaptation [99.93375364579484]
フェデレートされた学習手法により、プライバシを保護しながら、分散ユーザデータ上で機械学習モデルをトレーニングすることが可能になります。
分散クライアントデータがラベル付けされず、集中型ラベル付きデータセットがサーバ上で利用可能となる、より実用的なシナリオを考えます。
本稿では,新しい課題に対処する効果的なDualAdapt法を提案する。
論文 参考訳(メタデータ) (2021-08-17T17:53:05Z) - Coarse to Fine: Domain Adaptive Crowd Counting via Adversarial Scoring
Network [58.05473757538834]
本稿では,ドメイン間のギャップを粗い粒度から細かな粒度に埋める新しい逆スコアリングネットワーク (ASNet) を提案する。
3組のマイグレーション実験により,提案手法が最先端のカウント性能を実現することを示す。
論文 参考訳(メタデータ) (2021-07-27T14:47:24Z) - VisDA-2021 Competition Universal Domain Adaptation to Improve
Performance on Out-of-Distribution Data [64.91713686654805]
Visual Domain Adaptation (VisDA) 2021コンペティションは、新しいテストディストリビューションに適応するモデルの能力をテストする。
我々は,新しい視点,背景,モダリティ,品質劣化への適応性を評価する。
厳密なプロトコルを使用してパフォーマンスを計測し、最先端のドメイン適応手法と比較する。
論文 参考訳(メタデータ) (2021-07-23T03:21:51Z) - Unsatisfied Today, Satisfied Tomorrow: a simulation framework for
performance evaluation of crowdsourcing-based network monitoring [68.8204255655161]
本稿では, 性能の低い細胞の検出品質を評価するための実験フレームワークを提案する。
このフレームワークは、満足度調査のプロセスとユーザの満足度予測の両方をシミュレートする。
シミュレーションフレームワークを用いて、一般的なシナリオにおいて、性能の低いサイト検出の性能を実証的にテストする。
論文 参考訳(メタデータ) (2020-10-30T10:03:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。