Event-Triggered Time-Varying Bayesian Optimization
- URL: http://arxiv.org/abs/2208.10790v5
- Date: Thu, 6 Jun 2024 17:50:16 GMT
- Title: Event-Triggered Time-Varying Bayesian Optimization
- Authors: Paul Brunzema, Alexander von Rohr, Friedrich Solowjow, Sebastian Trimpe,
- Abstract summary: We propose an event-triggered algorithm that treats the optimization problem as static until it detects changes in the objective function and then resets the dataset.
This allows the algorithm to adapt online to realized temporal changes without the need for exact prior knowledge.
We derive regret bounds of adaptive resets without exact prior knowledge on the temporal changes, and show in numerical experiments that ET-GP-UCB outperforms state-of-the-art algorithms on both synthetic and real-world data.
- Score: 47.30677525394649
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of sequentially optimizing a time-varying objective function using time-varying Bayesian optimization (TVBO). To cope with stale data arising from time variations, current approaches to TVBO require prior knowledge of a constant rate of change. However, in practice, the rate of change is usually unknown. We propose an event-triggered algorithm, ET-GP-UCB, that treats the optimization problem as static until it detects changes in the objective function and then resets the dataset. This allows the algorithm to adapt online to realized temporal changes without the need for exact prior knowledge. The event trigger is based on probabilistic uniform error bounds used in Gaussian process regression. We derive regret bounds of adaptive resets without exact prior knowledge on the temporal changes, and show in numerical experiments that ET-GP-UCB outperforms state-of-the-art algorithms on both synthetic and real-world data. The results demonstrate that ET-GP-UCB is readily applicable to various settings without extensive hyperparameter tuning.
Related papers
- FedNAR: Federated Optimization with Normalized Annealing Regularization [54.42032094044368]
We explore the choices of weight decay and identify that weight decay value appreciably influences the convergence of existing FL algorithms.
We develop Federated optimization with Normalized Annealing Regularization (FedNAR), a plug-in that can be seamlessly integrated into any existing FL algorithms.
arXiv Detail & Related papers (2023-10-04T21:11:40Z) - Adaptive Sparse Gaussian Process [0.0]
We propose the first adaptive sparse Gaussian Process (GP) able to address all these issues.
We first reformulate a variational sparse GP algorithm to make it adaptive through a forgetting factor.
We then propose updating a single inducing point of the sparse GP model together with the remaining model parameters every time a new sample arrives.
arXiv Detail & Related papers (2023-02-20T21:34:36Z) - A Stable, Fast, and Fully Automatic Learning Algorithm for Predictive
Coding Networks [65.34977803841007]
Predictive coding networks are neuroscience-inspired models with roots in both Bayesian statistics and neuroscience.
We show how by simply changing the temporal scheduling of the update rule for the synaptic weights leads to an algorithm that is much more efficient and stable than the original one.
arXiv Detail & Related papers (2022-11-16T00:11:04Z) - On the Sparse DAG Structure Learning Based on Adaptive Lasso [39.31370830038554]
We develop a data-driven DAG structure learning method without the predefined threshold, called adaptive NOTEARS [30]
We show that adaptive NOTEARS enjoys the oracle properties under some specific conditions. Furthermore, simulation results validate the effectiveness of our method, without setting any gap of edges around zero.
arXiv Detail & Related papers (2022-09-07T05:47:59Z) - No-Regret Algorithms for Time-Varying Bayesian Optimization [0.0]
We adopt the general variation budget model to capture the time-varying environment.
We introduce two GP-UCB type algorithms: R-GP-UCB and SW-GP-UCB, respectively.
Our results not only recover previous linear bandit results when a linear kernel is used, but complement the previous regret analysis of time-varying Gaussian process bandit.
arXiv Detail & Related papers (2021-02-11T22:35:32Z) - Efficient Variational Bayesian Structure Learning of Dynamic Graphical
Models [19.591265962713837]
Estimating time-varying graphical models is of paramount importance in various social, financial, biological, and engineering systems.
Existing methods require extensive tuning of parameters that control the graph sparsity and temporal smoothness.
We propose a low-complexity tuning-free Bayesian approach, named BADGE.
arXiv Detail & Related papers (2020-09-16T14:19:23Z) - Obtaining Adjustable Regularization for Free via Iterate Averaging [43.75491612671571]
Regularization for optimization is a crucial technique to avoid overfitting in machine learning.
We establish an averaging scheme that converts the iterates of SGD on an arbitrary strongly convex and smooth objective function to its regularized counterpart.
Our approaches can be used for accelerated and preconditioned optimization methods as well.
arXiv Detail & Related papers (2020-08-15T15:28:05Z) - Balancing Rates and Variance via Adaptive Batch-Size for Stochastic
Optimization Problems [120.21685755278509]
In this work, we seek to balance the fact that attenuating step-size is required for exact convergence with the fact that constant step-size learns faster in time up to an error.
Rather than fixing the minibatch the step-size at the outset, we propose to allow parameters to evolve adaptively.
arXiv Detail & Related papers (2020-07-02T16:02:02Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z) - AdaS: Adaptive Scheduling of Stochastic Gradients [50.80697760166045]
We introduce the notions of textit"knowledge gain" and textit"mapping condition" and propose a new algorithm called Adaptive Scheduling (AdaS)
Experimentation reveals that, using the derived metrics, AdaS exhibits: (a) faster convergence and superior generalization over existing adaptive learning methods; and (b) lack of dependence on a validation set to determine when to stop training.
arXiv Detail & Related papers (2020-06-11T16:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.