論文の概要: pystacked: Stacking generalization and machine learning in Stata
- arxiv url: http://arxiv.org/abs/2208.10896v1
- Date: Tue, 23 Aug 2022 12:03:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-24 13:35:43.777551
- Title: pystacked: Stacking generalization and machine learning in Stata
- Title(参考訳): pystacked: Stataにおけるスタックの一般化とマシンラーニング
- Authors: Achim Ahrens, Christian B. Hansen, Mark E. Schaffer
- Abstract要約: pystackedはPythonのScikit-learを通じてスタック化された一般化を実装している。
Stackingは複数の教師付き機械学習者をひとつの学習者に結合する。
pystackedは、Scikit-Lernの機械学習アルゴリズムのための使いやすいAPIを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: pystacked implements stacked generalization (Wolpert, 1992) for regression
and binary classification via Python's scikit-lear}. Stacking combines multiple
supervised machine learners -- the "base" or "level-0" learners -- into a
single learner. The currently supported base learners include regularized
regression, random forest, gradient boosted trees, support vector machines, and
feed-forward neural nets (multi-layer perceptron). pystacked can also be used
with as a `regular' machine learning program to fit a single base learner and,
thus, provides an easy-to-use API for scikit-learn's machine learning
algorithms.
- Abstract(参考訳): pystacked は Python の scikit-lear} による回帰とバイナリ分類のためのスタック化された一般化 (Wolpert, 1992) を実装している。
Stackingは、複数の教師付き機械学習(ベースまたはレベル0学習者)を単一の学習者に統合する。
現在サポートされているベース学習者は、正規化回帰、ランダムフォレスト、勾配強化木、サポートベクターマシン、フィードフォワードニューラルネットワーク(多層パーセプトロン)である。
pystackedは、単一のベース学習者に適した‘正規’機械学習プログラムとして使用することも可能で、scikit-learnの機械学習アルゴリズムに使いやすいapiを提供する。
関連論文リスト
- forester: A Tree-Based AutoML Tool in R [0.0]
ForesterはオープンソースのAutoMLパッケージで、Rで実装され、高品質なツリーベースのモデルをトレーニングする。
バイナリとマルチクラスの分類、回帰、部分生存分析タスクを完全にサポートする。
データ品質に関する問題を検出し、前処理パイプラインを準備し、ツリーベースのモデルのトレーニングとチューニングを行い、結果を評価し、さらなる分析のためにレポートを作成することができる。
論文 参考訳(メタデータ) (2024-09-07T10:39:10Z) - TopoX: A Suite of Python Packages for Machine Learning on Topological
Domains [89.9320422266332]
TopoXはPythonのソフトウェアスイートで、トポロジ上のコンピューティングと機械学習のための信頼性とユーザフレンドリなビルディングブロックを提供する。
TopoXは、TopoNetX、TopoEmbedX、TopoModelxの3つのパッケージで構成されている。
論文 参考訳(メタデータ) (2024-02-04T10:41:40Z) - BackboneLearn: A Library for Scaling Mixed-Integer Optimization-Based
Machine Learning [0.0]
BackboneLearnは、インジケータ変数による混合整数最適化問題を高次元問題に拡張するためのフレームワークである。
BackboneLearnはPythonで構築されており、ユーザフレンドリで簡単に実装できる。
BackboneLearnのソースコードはGitHubで入手できる。
論文 参考訳(メタデータ) (2023-11-22T21:07:45Z) - LCE: An Augmented Combination of Bagging and Boosting in Python [45.65284933207566]
lcensembleはハイパフォーマンスでスケーラブルでユーザフレンドリなPythonパッケージで、分類と回帰の一般的なタスクのためのものだ。
Local Cascade Ensemble (LCE)は、現在の最先端手法であるRandom ForestとXGBoostの予測性能をさらに向上する機械学習手法である。
論文 参考訳(メタデータ) (2023-08-14T16:34:47Z) - What learning algorithm is in-context learning? Investigations with
linear models [87.91612418166464]
本稿では,トランスフォーマーに基づくインコンテキスト学習者が標準学習アルゴリズムを暗黙的に実装する仮説について検討する。
訓練された文脈内学習者は、勾配降下、隆起回帰、および正確な最小二乗回帰によって計算された予測値と密に一致していることを示す。
文脈内学習者がこれらの予測器とアルゴリズム的特徴を共有するという予備的証拠。
論文 参考訳(メタデータ) (2022-11-28T18:59:51Z) - hyperbox-brain: A Toolbox for Hyperbox-based Machine Learning Algorithms [9.061408029414455]
Hyperbox-brainはオープンソースのPythonライブラリで、主要なハイパーボックスベースの機械学習アルゴリズムを実装している。
Hyperbox-brainは、よく知られたScikit-learnおよびnumpyツールボックスと互換性のある統一APIを公開する。
論文 参考訳(メタデータ) (2022-10-06T06:40:07Z) - PyCIL: A Python Toolbox for Class-Incremental Learning [34.32500654158169]
クラス増分学習のためのいくつかの重要なアルゴリズムを実装したPythonツールボックスを提案する。
このツールボックスには、EWCやiCaRLといったCILの創設作業の実装が含まれている。
また、新しい基礎研究を行うために使用できる最先端のアルゴリズムも提供する。
論文 参考訳(メタデータ) (2021-12-23T13:41:24Z) - IMBENS: Ensemble Class-imbalanced Learning in Python [26.007498723608155]
imbensはオープンソースのPythonツールボックスで、クラス不均衡なデータに対してアンサンブル学習アルゴリズムを実装し、デプロイする。
imbensはMITオープンソースライセンスでリリースされており、Python Package Index (PyPI)からインストールすることができる。
論文 参考訳(メタデータ) (2021-11-24T20:14:20Z) - Solo-learn: A Library of Self-supervised Methods for Visual
Representation Learning [83.02597612195966]
solo-learnは視覚表現学習のための自己指導型のメソッドのライブラリである。
Pythonで実装され、PytorchとPytorch Lightningを使用して、このライブラリは研究と業界のニーズの両方に適合する。
論文 参考訳(メタデータ) (2021-08-03T22:19:55Z) - OPFython: A Python-Inspired Optimum-Path Forest Classifier [68.8204255655161]
本稿では,OPFythonと表記されるPythonベースのOptimum-Path Forestフレームワークを提案する。
OPFythonはPythonベースのライブラリなので、C言語よりもフレンドリーな環境とプロトタイピングの作業スペースを提供する。
論文 参考訳(メタデータ) (2020-01-28T15:46:19Z) - Backward Feature Correction: How Deep Learning Performs Deep
(Hierarchical) Learning [66.05472746340142]
本稿では,SGD による階層的学習 _efficiently_ と _automatically_ を学習目標として,多層ニューラルネットワークがどのように行うかを分析する。
我々は、下位機能のエラーを上位層と共にトレーニングする際に自動的に修正できる"後方特徴補正"と呼ばれる新しい原則を確立する。
論文 参考訳(メタデータ) (2020-01-13T17:28:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。