Adversarial Feature Augmentation for Cross-domain Few-shot
Classification
- URL: http://arxiv.org/abs/2208.11021v1
- Date: Tue, 23 Aug 2022 15:10:22 GMT
- Title: Adversarial Feature Augmentation for Cross-domain Few-shot
Classification
- Authors: Yanxu Hu and Andy J. Ma
- Abstract summary: We propose a novel adversarial feature augmentation (AFA) method to bridge the domain gap in few-shot learning.
The proposed method is a plug-and-play module that can be easily integrated into existing few-shot learning methods.
- Score: 2.68796389443975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing methods based on meta-learning predict novel-class labels for
(target domain) testing tasks via meta knowledge learned from (source domain)
training tasks of base classes. However, most existing works may fail to
generalize to novel classes due to the probably large domain discrepancy across
domains. To address this issue, we propose a novel adversarial feature
augmentation (AFA) method to bridge the domain gap in few-shot learning. The
feature augmentation is designed to simulate distribution variations by
maximizing the domain discrepancy. During adversarial training, the domain
discriminator is learned by distinguishing the augmented features (unseen
domain) from the original ones (seen domain), while the domain discrepancy is
minimized to obtain the optimal feature encoder. The proposed method is a
plug-and-play module that can be easily integrated into existing few-shot
learning methods based on meta-learning. Extensive experiments on nine datasets
demonstrate the superiority of our method for cross-domain few-shot
classification compared with the state of the art. Code is available at
https://github.com/youthhoo/AFA_For_Few_shot_learning
Related papers
- CDFSL-V: Cross-Domain Few-Shot Learning for Videos [58.37446811360741]
Few-shot video action recognition is an effective approach to recognizing new categories with only a few labeled examples.
Existing methods in video action recognition rely on large labeled datasets from the same domain.
We propose a novel cross-domain few-shot video action recognition method that leverages self-supervised learning and curriculum learning.
arXiv Detail & Related papers (2023-09-07T19:44:27Z) - Meta-DMoE: Adapting to Domain Shift by Meta-Distillation from
Mixture-of-Experts [33.21435044949033]
Most existing methods perform training on multiple source domains using a single model.
We propose a novel framework for unsupervised test-time adaptation, which is formulated as a knowledge distillation process.
arXiv Detail & Related papers (2022-10-08T02:28:10Z) - Few-Shot Object Detection in Unseen Domains [4.36080478413575]
Few-shot object detection (FSOD) has thrived in recent years to learn novel object classes with limited data.
We propose various data augmentations techniques on the few shots of novel classes to account for all possible domain-specific information.
Our experiments on the T-LESS dataset show that the proposed approach succeeds in alleviating the domain gap considerably.
arXiv Detail & Related papers (2022-04-11T13:16:41Z) - Domain Adaptation via Prompt Learning [39.97105851723885]
Unsupervised domain adaption (UDA) aims to adapt models learned from a well-annotated source domain to a target domain.
We introduce a novel prompt learning paradigm for UDA, named Domain Adaptation via Prompt Learning (DAPL)
arXiv Detail & Related papers (2022-02-14T13:25:46Z) - Few-Shot Classification in Unseen Domains by Episodic Meta-Learning
Across Visual Domains [36.98387822136687]
Few-shot classification aims to carry out classification given only few labeled examples for the categories of interest.
In this paper, we present a unique learning framework for domain-generalized few-shot classification.
By advancing meta-learning strategies, our learning framework exploits data across multiple source domains to capture domain-invariant features.
arXiv Detail & Related papers (2021-12-27T06:54:11Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain.
We build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets.
arXiv Detail & Related papers (2021-06-10T06:32:30Z) - Contrastive Learning and Self-Training for Unsupervised Domain
Adaptation in Semantic Segmentation [71.77083272602525]
UDA attempts to provide efficient knowledge transfer from a labeled source domain to an unlabeled target domain.
We propose a contrastive learning approach that adapts category-wise centroids across domains.
We extend our method with self-training, where we use a memory-efficient temporal ensemble to generate consistent and reliable pseudo-labels.
arXiv Detail & Related papers (2021-05-05T11:55:53Z) - Prototypical Cross-domain Self-supervised Learning for Few-shot
Unsupervised Domain Adaptation [91.58443042554903]
We propose an end-to-end Prototypical Cross-domain Self-Supervised Learning (PCS) framework for Few-shot Unsupervised Domain Adaptation (FUDA)
PCS not only performs cross-domain low-level feature alignment, but it also encodes and aligns semantic structures in the shared embedding space across domains.
Compared with state-of-the-art methods, PCS improves the mean classification accuracy over different domain pairs on FUDA by 10.5%, 3.5%, 9.0%, and 13.2% on Office, Office-Home, VisDA-2017, and DomainNet, respectively.
arXiv Detail & Related papers (2021-03-31T02:07:42Z) - Universal Representation Learning from Multiple Domains for Few-shot
Classification [41.821234589075445]
We propose to learn a single set of universal deep representations by distilling knowledge of multiple separately trained networks.
We show that the universal representations can be further refined for previously unseen domains by an efficient adaptation step.
arXiv Detail & Related papers (2021-03-25T13:49:12Z) - Surprisingly Simple Semi-Supervised Domain Adaptation with Pretraining
and Consistency [93.89773386634717]
Visual domain adaptation involves learning to classify images from a target visual domain using labels available in a different source domain.
We show that in the presence of a few target labels, simple techniques like self-supervision (via rotation prediction) and consistency regularization can be effective without any adversarial alignment to learn a good target classifier.
Our Pretraining and Consistency (PAC) approach, can achieve state of the art accuracy on this semi-supervised domain adaptation task, surpassing multiple adversarial domain alignment methods, across multiple datasets.
arXiv Detail & Related papers (2021-01-29T18:40:17Z) - Mind the Gap: Enlarging the Domain Gap in Open Set Domain Adaptation [65.38975706997088]
Open set domain adaptation (OSDA) assumes the presence of unknown classes in the target domain.
We show that existing state-of-the-art methods suffer a considerable performance drop in the presence of larger domain gaps.
We propose a novel framework to specifically address the larger domain gaps.
arXiv Detail & Related papers (2020-03-08T14:20:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.