Relative Phase Distribution and the Precision of Optical Phase Sensing
in Quantum Metrology
- URL: http://arxiv.org/abs/2208.11524v1
- Date: Wed, 24 Aug 2022 13:12:35 GMT
- Title: Relative Phase Distribution and the Precision of Optical Phase Sensing
in Quantum Metrology
- Authors: Felipe F. Braz, Tam\'iris R. Calixto, and Pablo L. Saldanha
- Abstract summary: We obtain the relative phase distribution introduced by Luis and S'anchez-Soto (LSS) for several two-mode pure quantum light states useful in quantum metrology.
Our results indicate that the LSS relative phase distribution can be used to predict the minimum uncertainty possible in the process of phase sensing in quantum metrology.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the quantum metrology goals is to improve the precision in the
measurement of a small optical phase introduced in one optical mode in an
interferometer, i.e., phase sensing. In this paper, we obtain the relative
phase distribution introduced by Luis and S\'anchez-Soto (LSS) [Phys. Rev. A
$\mathbf{53}$, 495 (1996)] for several two-mode pure quantum light states
useful in quantum metrology. We show that, within the numerical precision of
our calculations, the Fisher information obtained from the LSS relative phase
distribution is equal to the quantum Fisher information for the considered
states (the average difference for the tested states is smaller than 0.1%). Our
results indicate that the LSS relative phase distribution can be used to
predict the minimum uncertainty possible in the process of phase sensing in
quantum metrology, since this uncertainty depends on the quantum Fisher
information, at least for pure states.
Related papers
- Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Simultaneous quantum estimation of phase and indistinguishability in a
two photon interferometer [0.0]
We derive the quantum Fisher information matrix associated to the simultaneous estimation of an interferometric phase.
We perform an experiment based on a pair of photons with an unknown degree of indistinguishability entering a two-port interferometer.
arXiv Detail & Related papers (2023-03-27T18:56:03Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - QND measurements of photon number in monolithic microcavities [0.0]
We revisit the idea of quantum nondemolition measurement (QND) of optical quanta.
We show that the monolithic microcavities enable QND measurement of number of quanta in a weak signal field.
We show that the best modern monolithic microcavities allow achieving the measurement imprecision several times better than the standard quantum limit.
arXiv Detail & Related papers (2021-11-29T17:00:15Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Quantum metrology of two-photon absorption [0.0]
Two-photon absorption (TPA) is of fundamental importance in super-resolution imaging and spectroscopy.
We establish the metrological properties of nonclassical squeezed light sources for precision measurements of TPA cross sections.
We find that there is no fundamental limit for the precision achievable with squeezed states in the limit of very small cross sections.
arXiv Detail & Related papers (2021-05-04T15:21:15Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Non-Markovian effect on quantum optical metrology under dissipative
environment [1.6058099298620423]
Non-Markovian effects are shown to be effective in performing quantum optical metrology under locally dissipative environments.
Our work provides a recipe to realize ultrasensitive measurements in the presence of noise by utilizing non-Markovian effects.
arXiv Detail & Related papers (2020-02-09T14:50:54Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.