Constraint-driven multi-task learning
- URL: http://arxiv.org/abs/2208.11656v1
- Date: Wed, 24 Aug 2022 16:53:54 GMT
- Title: Constraint-driven multi-task learning
- Authors: Bogdan Cretu, Andrew Cropper
- Abstract summary: In this project, we extend the Popper ILP system to make use of multi-task learning.
We introduce constraint preservation, a technique that improves overall performance for all approaches.
- Score: 18.27510863075184
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inductive logic programming is a form of machine learning based on
mathematical logic that generates logic programs from given examples and
background knowledge.
In this project, we extend the Popper ILP system to make use of multi-task
learning. We implement the state-of-the-art approach and several new strategies
to improve search performance. Furthermore, we introduce constraint
preservation, a technique that improves overall performance for all approaches.
Constraint preservation allows the system to transfer knowledge between
updates on the background knowledge set. Consequently, we reduce the amount of
repeated work performed by the system. Additionally, constraint preservation
allows us to transition from the current state-of-the-art iterative deepening
search approach to a more efficient breadth first search approach.
Finally, we experiment with curriculum learning techniques and show their
potential benefit to the field.
Related papers
- Online inductive learning from answer sets for efficient reinforcement learning exploration [52.03682298194168]
We exploit inductive learning of answer set programs to learn a set of logical rules representing an explainable approximation of the agent policy.
We then perform answer set reasoning on the learned rules to guide the exploration of the learning agent at the next batch.
Our methodology produces a significant boost in the discounted return achieved by the agent, even in the first batches of training.
arXiv Detail & Related papers (2025-01-13T16:13:22Z) - A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learning is a novel unified framework for learning with neural networks "over time"
It is based on differential equations that: (i) can be integrated without the need of external software solvers; (ii) generalize the well-established notion of gradient-based learning in feed-forward and recurrent networks; (iii) open to novel perspectives.
arXiv Detail & Related papers (2024-09-18T14:57:13Z) - Towards a General Framework for Continual Learning with Pre-training [55.88910947643436]
We present a general framework for continual learning of sequentially arrived tasks with the use of pre-training.
We decompose its objective into three hierarchical components, including within-task prediction, task-identity inference, and task-adaptive prediction.
We propose an innovative approach to explicitly optimize these components with parameter-efficient fine-tuning (PEFT) techniques and representation statistics.
arXiv Detail & Related papers (2023-10-21T02:03:38Z) - Subspace Distillation for Continual Learning [27.22147868163214]
We propose a knowledge distillation technique that takes into account the manifold structure of a neural network in learning novel tasks.
We demonstrate that the modeling with subspaces provides several intriguing properties, including robustness to noise.
Empirically, we observe that our proposed method outperforms various continual learning methods on several challenging datasets.
arXiv Detail & Related papers (2023-07-31T05:59:09Z) - Hierarchically Structured Task-Agnostic Continual Learning [0.0]
We take a task-agnostic view of continual learning and develop a hierarchical information-theoretic optimality principle.
We propose a neural network layer, called the Mixture-of-Variational-Experts layer, that alleviates forgetting by creating a set of information processing paths.
Our approach can operate in a task-agnostic way, i.e., it does not require task-specific knowledge, as is the case with many existing continual learning algorithms.
arXiv Detail & Related papers (2022-11-14T19:53:15Z) - A Multi-label Continual Learning Framework to Scale Deep Learning
Approaches for Packaging Equipment Monitoring [57.5099555438223]
We study multi-label classification in the continual scenario for the first time.
We propose an efficient approach that has a logarithmic complexity with regard to the number of tasks.
We validate our approach on a real-world multi-label Forecasting problem from the packaging industry.
arXiv Detail & Related papers (2022-08-08T15:58:39Z) - Continual Prompt Tuning for Dialog State Tracking [58.66412648276873]
A desirable dialog system should be able to continually learn new skills without forgetting old ones.
We present Continual Prompt Tuning, a parameter-efficient framework that not only avoids forgetting but also enables knowledge transfer between tasks.
arXiv Detail & Related papers (2022-03-13T13:22:41Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z) - Managing caching strategies for stream reasoning with reinforcement
learning [18.998260813058305]
Stream reasoning allows efficient decision-making over continuously changing data.
We suggest a novel approach that uses the Conflict-Driven Constraint Learning (CDCL) to efficiently update legacy solutions.
In particular, we study the applicability of reinforcement learning to continuously assess the utility of learned constraints.
arXiv Detail & Related papers (2020-08-07T15:01:41Z) - Model-based Multi-Agent Reinforcement Learning with Cooperative
Prioritized Sweeping [4.5497948012757865]
We present a new model-based reinforcement learning algorithm, Cooperative Prioritized Sweeping.
The algorithm allows for sample-efficient learning on large problems by exploiting a factorization to approximate the value function.
Our method outperforms the state-of-the-art algorithm sparse cooperative Q-learning algorithm, both on the well-known SysAdmin benchmark and randomized environments.
arXiv Detail & Related papers (2020-01-15T19:13:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.