Dissipative time crystals with long-range Lindbladians
- URL: http://arxiv.org/abs/2208.11659v3
- Date: Wed, 21 Dec 2022 09:23:49 GMT
- Title: Dissipative time crystals with long-range Lindbladians
- Authors: Gianluca Passarelli, Procolo Lucignano, Rosario Fazio, Angelo
Russomanno
- Abstract summary: We show that time-translation breaking collective oscillations persist, in the thermodynamic limit, even in the absence of spin symmetry.
This model shows a surprisingly rich phase diagram, including the time-crystal phase as well as first-order, second-order, and continuous transitions of the fixed points.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dissipative time crystals can appear in spin systems, when the $Z_2$ symmetry
of the Hamiltonian is broken by the environment, and the square of total spin
operator $S^2$ is conserved. In this manuscript, we relax the latter condition
and show that time-translation-symmetry breaking collective oscillations
persist, in the thermodynamic limit, even in the absence of spin symmetry. We
engineer an \textit{ad hoc} Lindbladian using power-law decaying spin operators
and show that time-translation symmetry breaking appears when the decay
exponent obeys $0<\eta\leq 1$. This model shows a surprisingly rich phase
diagram, including the time-crystal phase as well as first-order, second-order,
and continuous transitions of the fixed points. We study the phase diagram and
the magnetization dynamics in the mean-field approximation. We prove that this
approximation is quantitatively accurate, when $0<\eta\leq1$ and the
thermodynamic limit is taken, because the system does not develop sizable
quantum fluctuations, if the Gaussian approximation is considered.
Related papers
- Long time rigidity to flux-induced symmetry breaking in quantum quench
dynamics [0.6374763930914524]
We show that when the initial state is insulating and the symmetry is broken non-locally by a constant magnetic flux, local observables and correlations behave as if the symmetry were unbroken for a time interval proportional to the system size $L$.
The robustness of the tsunami effect to weak disorder and interactions is demonstrated, and possible experimental realizations are proposed.
arXiv Detail & Related papers (2023-07-07T13:19:38Z) - Dissipative time crystal in a strongly interacting Rydberg gas [14.07614057267722]
We report the experimental observation of such dissipative time crystalline order in a room-temperature atomic gas.
The observed limit cycles arise from the coexistence and competition between distinct Rydberg components.
The nondecaying autocorrelation of the oscillation, together with the robustness against temporal noises, indicate the establishment of true long-range temporal order.
arXiv Detail & Related papers (2023-05-31T17:44:32Z) - Scaling laws of the out-of-time-order correlators at the transition to
the spontaneous $\cal{PT}$-symmetry breaking in a Floquet system [3.121345642619774]
We investigate the dynamics of out-of-time-order correlators (OTOCs) in a non-Hermitian kicked rotor model.
In the unbroken phase of $mathcalPT$ symmetry, the OTOCs increase monotonically and eventually saturate with time.
Just beyond the phase transition points, the OTOCs increase in the power-laws of time, with the exponent larger than two.
arXiv Detail & Related papers (2023-02-20T06:44:13Z) - Scalable Spin Squeezing from Finite Temperature Easy-plane Magnetism [26.584014467399378]
We conjecture that any Hamiltonian exhibiting finite temperature, easy-plane ferromagnetism can be used to generate scalable spin squeezing.
Our results provide insights into the landscape of Hamiltonians that can be used to generate metrologically useful quantum states.
arXiv Detail & Related papers (2023-01-23T18:59:59Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Emergent time crystals from phase-space noncommutative quantum mechanics [0.0]
We show that noncommutativity drives the amplitude of periodic oscillations identified as time crystals.
A natural extension of our analysis shows how the spontaneous formation of time quasi-crystals can arise.
arXiv Detail & Related papers (2022-07-01T11:24:26Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Scalable spin squeezing from spontaneous breaking of a continuous
symmetry [0.0]
In systems of $S=1/2$ or qubits, the combination of the suppression of fluctuations along one direction and of the persistence of transverse magnetization leads to spin squeezing.
Our findings open the door to the adiabatic preparation of strongly spin-squeezed states in a large variety of quantum many-body devices including e.g. optical lattice clocks.
arXiv Detail & Related papers (2022-02-17T11:41:30Z) - Rapid thermalization of spin chain commuting Hamiltonians [13.349045680843885]
We prove that spin chains weakly coupled to a large heat bath thermalize rapidly at any temperature for finite-range, translation-invariant commuting Hamiltonians.
This has wide-ranging applications to the study of many-body in and out-of-equilibrium quantum systems.
arXiv Detail & Related papers (2021-12-01T16:08:10Z) - Fragility to quantum fluctuations of classical Hamiltonian period
doubling [0.0]
We add quantum fluctuations to a classical period-doubling Hamiltonian time crystal, replacing the $N$ classical interacting angular momenta with quantum spins of size $l$.
The full permutation symmetry of the Hamiltonian allows a mapping to a bosonic model and the application of exact diagonalization for quite large system size.
arXiv Detail & Related papers (2021-08-25T18:02:57Z) - SYK meets non-Hermiticity II: measurement-induced phase transition [16.533265279392772]
We analytically derive the effective action in the large-$N$ limit and show that an entanglement transition is caused by the symmetry breaking in the enlarged replica space.
We also verify the large-$N$ critical exponents by numerically solving the Schwinger-Dyson equation.
arXiv Detail & Related papers (2021-04-16T17:55:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.