Long time rigidity to flux-induced symmetry breaking in quantum quench
dynamics
- URL: http://arxiv.org/abs/2307.03580v2
- Date: Mon, 8 Jan 2024 10:05:16 GMT
- Title: Long time rigidity to flux-induced symmetry breaking in quantum quench
dynamics
- Authors: Lorenzo Rossi, Luca Barbiero, Jan Carl Budich, and Fabrizio Dolcini
- Abstract summary: We show that when the initial state is insulating and the symmetry is broken non-locally by a constant magnetic flux, local observables and correlations behave as if the symmetry were unbroken for a time interval proportional to the system size $L$.
The robustness of the tsunami effect to weak disorder and interactions is demonstrated, and possible experimental realizations are proposed.
- Score: 0.6374763930914524
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We investigate how the breaking of charge conjugation symmetry $\mathcal{C}$
impacts on the dynamics of a half-filled fermionic lattice system after global
quenches. We show that, when the initial state is insulating and the
$\mathcal{C}$-symmetry is broken non-locally by a constant magnetic flux, local
observables and correlations behave as if the symmetry were unbroken for a time
interval proportional to the system size $L$. In particular, the local particle
density of a quenched dimerized insulator remains pinned to $1/2$ in each
lattice site for an extensively long time, while it starts to significantly
fluctuate only afterwards. Due to its qualitative resemblance to the sudden
arrival of rapidly rising ocean waves, we dub this phenomenon the ``tsunami
effect". Notably, it occurs even though the chiral symmetry is dynamically
broken right after the quench. Furthermore, we identify a way to quantify the
amount of symmetry breaking in the quantum state, showing that in insulators
perturbed by a flux it is exponentially suppressed as a function of the system
size, while it is only algebraically suppressed in metals and in insulators
with locally broken $\mathcal{C}$-symmetry. The robustness of the tsunami
effect to weak disorder and interactions is demonstrated, and possible
experimental realizations are proposed.
Related papers
- Three perspectives on entropy dynamics in a non-Hermitian two-state system [41.94295877935867]
entropy dynamics as an indicator of physical behavior in an open two-state system with balanced gain and loss is presented.
We distinguish the perspective taken in utilizing the conventional framework of Hermitian-adjoint states from an approach that is based on biorthogonal-adjoint states and a third case based on an isospectral mapping.
arXiv Detail & Related papers (2024-04-04T14:45:28Z) - Entanglement asymmetry and quantum Mpemba effect in two-dimensional free-fermion systems [0.0]
The quantum Mpemba effect is the counter-intuitive non-equilibrium phenomenon wherein the dynamic restoration of a broken symmetry occurs more rapidly when the initial state exhibits a higher degree of symmetry breaking.
Here we focus on a two-dimensional free-fermion lattice employing the entanglement asymmetry as a measure of symmetry breaking.
We find that the quantum Mpemba effect is strongly affected by the size of the system in the transverse dimension, with the potential to either enhance or spoil the phenomenon depending on the initial states.
arXiv Detail & Related papers (2024-03-07T13:38:40Z) - Entangled multiplets, asymmetry, and quantum Mpemba effect in dissipative systems [0.0]
We conjecture a quasiparticle picture for the charged moments of the reduced density matrix, which are the main ingredients to construct the asymmetry.
By using the Lindblad master equation, we study the effect of gain and loss dissipation on the entanglement asymmetry.
arXiv Detail & Related papers (2024-02-05T11:37:47Z) - Entanglement asymmetry and quantum Mpemba effect in the XY spin chain [0.0]
Entanglement asymmetry is a quantity introduced to measure how much a symmetry is broken in a part of an extended quantum system.
We study the entanglement asymmetry at equilibrium taking the ground state of the XY spin chain.
We find that the power law governing symmetry restoration depends discontinuously on whether the initial state is critical or not.
arXiv Detail & Related papers (2023-10-11T14:10:53Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Dissipative time crystals with long-range Lindbladians [0.0]
We show that time-translation breaking collective oscillations persist, in the thermodynamic limit, even in the absence of spin symmetry.
This model shows a surprisingly rich phase diagram, including the time-crystal phase as well as first-order, second-order, and continuous transitions of the fixed points.
arXiv Detail & Related papers (2022-08-24T16:55:28Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Scalable spin squeezing from spontaneous breaking of a continuous
symmetry [0.0]
In systems of $S=1/2$ or qubits, the combination of the suppression of fluctuations along one direction and of the persistence of transverse magnetization leads to spin squeezing.
Our findings open the door to the adiabatic preparation of strongly spin-squeezed states in a large variety of quantum many-body devices including e.g. optical lattice clocks.
arXiv Detail & Related papers (2022-02-17T11:41:30Z) - Simultaneous Transport Evolution for Minimax Equilibria on Measures [48.82838283786807]
Min-max optimization problems arise in several key machine learning setups, including adversarial learning and generative modeling.
In this work we focus instead in finding mixed equilibria, and consider the associated lifted problem in the space of probability measures.
By adding entropic regularization, our main result establishes global convergence towards the global equilibrium.
arXiv Detail & Related papers (2022-02-14T02:23:16Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.