Towards Sparsified Federated Neuroimaging Models via Weight Pruning
- URL: http://arxiv.org/abs/2208.11669v1
- Date: Wed, 24 Aug 2022 17:05:47 GMT
- Title: Towards Sparsified Federated Neuroimaging Models via Weight Pruning
- Authors: Dimitris Stripelis, Umang Gupta, Nikhil Dhinagar, Greg Ver Steeg, Paul
Thompson, Jos\'e Luis Ambite
- Abstract summary: FedSparsify performs model pruning during federated training.
We show that models can be pruned up to 95% sparsity without affecting performance.
One surprising benefit of model pruning is improved model privacy.
- Score: 13.0319103091844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated training of large deep neural networks can often be restrictive due
to the increasing costs of communicating the updates with increasing model
sizes. Various model pruning techniques have been designed in centralized
settings to reduce inference times. Combining centralized pruning techniques
with federated training seems intuitive for reducing communication costs -- by
pruning the model parameters right before the communication step. Moreover,
such a progressive model pruning approach during training can also reduce
training times/costs. To this end, we propose FedSparsify, which performs model
pruning during federated training. In our experiments in centralized and
federated settings on the brain age prediction task (estimating a person's age
from their brain MRI), we demonstrate that models can be pruned up to 95%
sparsity without affecting performance even in challenging federated learning
environments with highly heterogeneous data distributions. One surprising
benefit of model pruning is improved model privacy. We demonstrate that models
with high sparsity are less susceptible to membership inference attacks, a type
of privacy attack.
Related papers
- Semi-Supervised Reward Modeling via Iterative Self-Training [52.48668920483908]
We propose Semi-Supervised Reward Modeling (SSRM), an approach that enhances RM training using unlabeled data.
We demonstrate that SSRM significantly improves reward models without incurring additional labeling costs.
Overall, SSRM substantially reduces the dependency on large volumes of human-annotated data, thereby decreasing the overall cost and time involved in training effective reward models.
arXiv Detail & Related papers (2024-09-10T22:57:58Z) - Communication-Efficient Federated Learning through Adaptive Weight
Clustering and Server-Side Distillation [10.541541376305245]
Federated Learning (FL) is a promising technique for the collaborative training of deep neural networks across multiple devices.
FL is hindered by excessive communication costs due to repeated server-client communication during training.
We propose FedCompress, a novel approach that combines dynamic weight clustering and server-side knowledge distillation.
arXiv Detail & Related papers (2024-01-25T14:49:15Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Pre-Pruning and Gradient-Dropping Improve Differentially Private Image
Classification [9.120531252536617]
We introduce a new training paradigm that uses textitpre-pruning and textitgradient-dropping to reduce the parameter space and improve scalability.
Our training paradigm introduces a tension between the rates of pre-pruning and gradient-dropping, privacy loss, and classification accuracy.
arXiv Detail & Related papers (2023-06-19T14:35:28Z) - Conquering the Communication Constraints to Enable Large Pre-Trained Models in Federated Learning [18.12162136918301]
Federated learning (FL) has emerged as a promising paradigm for enabling the collaborative training of models without centralized access to the raw data on local devices.
Recent state-of-the-art pre-trained models are getting more capable but also have more parameters.
Can we find a solution to enable those strong and readily-available pre-trained models in FL to achieve excellent performance while simultaneously reducing the communication burden?
Specifically, we systemically evaluate the performance of FedPEFT across a variety of client stability, data distribution, and differential privacy settings.
arXiv Detail & Related papers (2022-10-04T16:08:54Z) - Dimensionality Reduced Training by Pruning and Freezing Parts of a Deep
Neural Network, a Survey [69.3939291118954]
State-of-the-art deep learning models have a parameter count that reaches into the billions. Training, storing and transferring such models is energy and time consuming, thus costly.
Model compression lowers storage and transfer costs, and can further make training more efficient by decreasing the number of computations in the forward and/or backward pass.
This work is a survey on methods which reduce the number of trained weights in deep learning models throughout the training.
arXiv Detail & Related papers (2022-05-17T05:37:08Z) - Federated Progressive Sparsification (Purge, Merge, Tune)+ [15.08232397899507]
FedSparsify is a sparsification strategy based on progressive weight magnitude pruning.
We show experimentally that FedSparsify learns a subnetwork of both high sparsity and learning performance.
arXiv Detail & Related papers (2022-04-26T16:45:53Z) - Enabling On-Device Training of Speech Recognition Models with Federated
Dropout [4.165917555996752]
Federated learning can be used to train machine learning models on the edge on local data that never leave devices.
We propose using federated dropout to reduce the size of client models while training a full-size model server-side.
arXiv Detail & Related papers (2021-10-07T17:22:40Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z) - A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via
Adversarial Fine-tuning [90.44219200633286]
We propose a simple yet very effective adversarial fine-tuning approach based on a $textitslow start, fast decay$ learning rate scheduling strategy.
Experimental results show that the proposed adversarial fine-tuning approach outperforms the state-of-the-art methods on CIFAR-10, CIFAR-100 and ImageNet datasets.
arXiv Detail & Related papers (2020-12-25T20:50:15Z) - Dynamic Model Pruning with Feedback [64.019079257231]
We propose a novel model compression method that generates a sparse trained model without additional overhead.
We evaluate our method on CIFAR-10 and ImageNet, and show that the obtained sparse models can reach the state-of-the-art performance of dense models.
arXiv Detail & Related papers (2020-06-12T15:07:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.