Semi-Supervised Reward Modeling via Iterative Self-Training
- URL: http://arxiv.org/abs/2409.06903v1
- Date: Tue, 10 Sep 2024 22:57:58 GMT
- Title: Semi-Supervised Reward Modeling via Iterative Self-Training
- Authors: Yifei He, Haoxiang Wang, Ziyan Jiang, Alexandros Papangelis, Han Zhao,
- Abstract summary: We propose Semi-Supervised Reward Modeling (SSRM), an approach that enhances RM training using unlabeled data.
We demonstrate that SSRM significantly improves reward models without incurring additional labeling costs.
Overall, SSRM substantially reduces the dependency on large volumes of human-annotated data, thereby decreasing the overall cost and time involved in training effective reward models.
- Score: 52.48668920483908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reward models (RM) capture the values and preferences of humans and play a central role in Reinforcement Learning with Human Feedback (RLHF) to align pretrained large language models (LLMs). Traditionally, training these models relies on extensive human-annotated preference data, which poses significant challenges in terms of scalability and cost. To overcome these limitations, we propose Semi-Supervised Reward Modeling (SSRM), an approach that enhances RM training using unlabeled data. Given an unlabeled dataset, SSRM involves three key iterative steps: pseudo-labeling unlabeled examples, selecting high-confidence examples through a confidence threshold, and supervised finetuning on the refined dataset. Across extensive experiments on various model configurations, we demonstrate that SSRM significantly improves reward models without incurring additional labeling costs. Notably, SSRM can achieve performance comparable to models trained entirely on labeled data of equivalent volumes. Overall, SSRM substantially reduces the dependency on large volumes of human-annotated data, thereby decreasing the overall cost and time involved in training effective reward models.
Related papers
- MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - GenARM: Reward Guided Generation with Autoregressive Reward Model for Test-time Alignment [36.52424795446663]
GenARM is a test-time alignment approach that leverages the Autoregressive Reward Model.
We show that GenARM significantly outperforms prior test-time alignment baselines.
It supports real-time trade-offs between preference dimensions and catering to diverse user preferences without retraining.
arXiv Detail & Related papers (2024-10-10T17:58:24Z) - DogeRM: Equipping Reward Models with Domain Knowledge through Model Merging [65.41765072566287]
We propose textbfDomain knowledtextbfge merged textbfReward textbfModel (DogeRM), a novel framework that integrates domain-specific knowledge into a general reward model by model merging.
arXiv Detail & Related papers (2024-07-01T17:01:54Z) - Prior Constraints-based Reward Model Training for Aligning Large Language Models [58.33118716810208]
This paper proposes a Prior Constraints-based Reward Model (namely PCRM) training method to mitigate this problem.
PCRM incorporates prior constraints, specifically, length ratio and cosine similarity between outputs of each comparison pair, during reward model training to regulate optimization magnitude and control score margins.
Experimental results demonstrate that PCRM significantly improves alignment performance by effectively constraining reward score scaling.
arXiv Detail & Related papers (2024-04-01T07:49:11Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - Maintaining Stability and Plasticity for Predictive Churn Reduction [8.971668467496055]
We propose a solution called Accumulated Model Combination (AMC)
AMC is a general technique and we propose several instances of it, each having their own advantages depending on the model and data properties.
arXiv Detail & Related papers (2023-05-06T20:56:20Z) - SAFE: Machine Unlearning With Shard Graphs [100.12621304361288]
We present Synergy Aware Forgetting Ensemble (SAFE), a method to adapt large models on a diverse collection of data.
SAFE uses a lightweight system of adapters which can be trained while reusing most of the computations.
This allows SAFE to be trained on shards an order-of-magnitude smaller than current state-of-the-art methods.
arXiv Detail & Related papers (2023-04-25T22:02:09Z) - Stabilizing and Improving Federated Learning with Non-IID Data and
Client Dropout [15.569507252445144]
Label distribution skew induced data heterogeniety has been shown to be a significant obstacle that limits the model performance in federated learning.
We propose a simple yet effective framework by introducing a prior-calibrated softmax function for computing the cross-entropy loss.
The improved model performance over existing baselines in the presence of non-IID data and client dropout is demonstrated.
arXiv Detail & Related papers (2023-03-11T05:17:59Z) - CausalAgents: A Robustness Benchmark for Motion Forecasting using Causal
Relationships [8.679073301435265]
We construct a new benchmark for evaluating and improving model robustness by applying perturbations to existing data.
We use these labels to perturb the data by deleting non-causal agents from the scene.
Under non-causal perturbations, we observe a $25$-$38%$ relative change in minADE as compared to the original.
arXiv Detail & Related papers (2022-07-07T21:28:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.