Magnetic cooling and vibration isolation of a sub-kHz mechanical
resonator
- URL: http://arxiv.org/abs/2208.11750v1
- Date: Wed, 24 Aug 2022 19:30:20 GMT
- Title: Magnetic cooling and vibration isolation of a sub-kHz mechanical
resonator
- Authors: Bernard van Heck, Tim Fuchs, Jaimy Plugge, Wim A. Bosch, and Tjerk H.
Oosterkamp
- Abstract summary: We report progress towards the realization of a sub-mK, low-vibration environment at the bottom stage of a dry dilution refrigerator.
Using adiabatic nuclear demagnetization, we have cooled a silicon cantilever force sensor to $Tapprox 1$ mK.
We discuss feasible improvements that will allow us to probe unexplored regions of the parameter space of continuous spontaneous localization models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We report recent progress towards the realization of a sub-mK, low-vibration
environment at the bottom stage of a dry dilution refrigerator for use in
mechanical tests of quantum mechanics. Using adiabatic nuclear demagnetization,
we have cooled a silicon cantilever force sensor to $T\approx 1$ mK. The
temperature of the tip-holder of the cantilever chip was determined via a
primary magnetic flux noise thermometer. The quality factor of the cantilever
continues to increase with decreasing temperature, reaching $Q\approx 4\cdot
10^4$ at $2$ mK. To demonstrate that the vibration isolation is not
compromised, we report the detection of the thermal motion of the cantilever
down to $T \approx 20$ mK, only limited by the coupling to the SQUID readout
circuit. We discuss feasible improvements that will allow us to probe
unexplored regions of the parameter space of continuous spontaneous
localization models.
Related papers
- Overcoming the Thermal-Noise Limit of Room-Temperature Microwave Measurements by Cavity Pre-cooling with a Low-Noise Amplifier. Application to Time-resolved Electron Paramagnetic Resonance [0.34530027457862006]
cavity pre-cooling (CPC) removes, just prior to performing a measurement, a large fraction of the deleterious thermal photons that would otherwise occupy the electromagnetic modes of a microwave cavity at room temperature.
Our method repurposes the input of a commercial HEMT-based low-noise amplifier (LNA) to serve as a photon-absorbing cold load that is temporarily over-coupled to the cavity.
In a proof-of-concept experiment, the noise temperature of a monitored microwave mode drops from a little below room temperature to approx 108 K.
arXiv Detail & Related papers (2024-08-09T22:43:29Z) - Quantum-circuit refrigeration of a superconducting microwave resonator
well below a single quantum [0.0]
We experimentally demonstrate a proposed single-junction quantum-circuit refrigerator (QCR) for a superconducting 4.7-GHz resonator.
We demonstrate coherent and thermal resonator states and that the on-demand dissipation provided by the QCR can drive these to a small fraction of a photon on average.
This work introduces a versatile tool to study open quantum systems, quantum thermodynamics, and to quickly reset superconducting qubits.
arXiv Detail & Related papers (2023-08-01T09:20:07Z) - Optical self-cooling of a membrane oscillator in a cavity optomechanical
experiment at room temperature [0.0]
Thermal noise is a major obstacle to observing quantum behavior in macroscopic systems.
We show that further cooling is prevented by the excess classical noise of our laser source.
arXiv Detail & Related papers (2023-05-24T08:56:23Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Measurement of the Low-temperature Loss Tangent of High-resistivity
Silicon with a High Q-factor Superconducting Resonator [58.720142291102135]
We present the direct loss tangent measurement of a high-resist intrinsicivity (100) silicon wafer in the temperature range from 70 mK to 1 K.
The measurement was performed using a technique that takes advantage of a high quality factor superconducting niobium resonator.
arXiv Detail & Related papers (2021-08-19T20:13:07Z) - Floquet prethermalization with lifetime exceeding 90s in a bulk
hyperpolarized solid [43.55994393060723]
We observe long-lived Floquet prethermal states in a bulk solid composed of dipolar-coupled $13$C nuclei in diamond at room temperature.
For precessing nuclear spins prepared in an initial transverse state, we demonstrate pulsed spin-lock Floquet control.
arXiv Detail & Related papers (2021-04-05T16:31:02Z) - Open-cavity in closed-cycle cryostat as a quantum optics platform [47.50219326456544]
We present a fiber-based open Fabry-P'erot cavity in a closed-cycle cryostat exhibiting ultra-high mechanical stability.
This set of results manifests open-cavity in a closed-cycle cryostat as a versatile and powerful platform for low-temperature cavity QED experiments.
arXiv Detail & Related papers (2021-03-09T18:41:48Z) - Testing Dissipative Collapse Models with a Levitated Micromagnet [0.0]
We present experimental tests of dissipative extensions of spontaneous wave function collapse models based on a levitated micromagnet with ultralow dissipation.
In particular, dissipative models give rise to an intrinsic damping of an isolated system with the effect parameterized by a temperature constant.
We present the first bounds on dissipative effects in a more recent model, which relates the wave function collapse to fluctuations of a generalized complex-valued spacetime metric.
arXiv Detail & Related papers (2020-08-14T08:35:20Z) - A robust fiber-based quantum thermometer coupled with nitrogen-vacancy
centers [29.359306535600815]
We present a robust fiber-based quantum thermometer which can significantly isolate the magnetic field noise and microwave power shift.
With a frequency modulation scheme, we realize the temperature measurement by detecting the variation of the sharp-dip in the zero-field optically detected magnetic resonance spectrum.
arXiv Detail & Related papers (2020-04-09T03:24:52Z) - Force and acceleration sensing with optically levitated nanogram masses
at microkelvin temperatures [57.72546394254112]
This paper demonstrates cooling of the center-of-mass motion of 10 $mu$m-diameter optically levitated silica spheres to an effective temperature of $50pm22 mu$K.
It is shown that under these conditions the spheres remain stably trapped at pressures of $sim 10-7$ mbar with no active cooling for periods longer than a day.
arXiv Detail & Related papers (2020-01-29T16:20:35Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.