論文の概要: CNN-based Prediction of Network Robustness With Missing Edges
- arxiv url: http://arxiv.org/abs/2208.11847v1
- Date: Thu, 25 Aug 2022 03:36:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-26 14:04:00.349103
- Title: CNN-based Prediction of Network Robustness With Missing Edges
- Title(参考訳): CNNによるエッジ不足によるネットワークロバストネスの予測
- Authors: Chengpei Wu and Yang Lou and Ruizi Wu and Wenwen Liu and Junli Li
- Abstract要約: 部分的なネットワーク情報が欠落している場合、CNNによる接続性および制御可能性予測の性能について検討する。
しきい値として、7.29%以上の情報が失われれば、CNNベースの予測の性能は著しく劣化する。
- 参考スコア(独自算出の注目度): 0.9239657838690227
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Connectivity and controllability of a complex network are two important
issues that guarantee a networked system to function. Robustness of
connectivity and controllability guarantees the system to function properly and
stably under various malicious attacks. Evaluating network robustness using
attack simulations is time consuming, while the convolutional neural network
(CNN)-based prediction approach provides a cost-efficient method to approximate
the network robustness. In this paper, we investigate the performance of
CNN-based approaches for connectivity and controllability robustness
prediction, when partial network information is missing, namely the adjacency
matrix is incomplete. Extensive experimental studies are carried out. A
threshold is explored that if a total amount of more than 7.29\% information is
lost, the performance of CNN-based prediction will be significantly degenerated
for all cases in the experiments. Two scenarios of missing edge representations
are compared, 1) a missing edge is marked `no edge' in the input for
prediction, and 2) a missing edge is denoted using a special marker of
`unknown'. Experimental results reveal that the first representation is
misleading to the CNN-based predictors.
- Abstract(参考訳): 複雑なネットワークの接続性と制御性は、ネットワークシステムが機能することを保証する2つの重要な問題である。
接続性と制御性のロバスト性は、システムが様々な悪意ある攻撃の下で適切に安定して機能することを保証する。
攻撃シミュレーションを用いたネットワークロバスト性の評価には時間を要するが、畳み込みニューラルネットワーク(CNN)ベースの予測アプローチは、ネットワークロバスト性を近似するコスト効率のよい方法を提供する。
本稿では,部分的ネットワーク情報が欠落した場合の接続性および制御性ロバストネス予測のためのcnnベースの手法,すなわち隣接行列が不完全である場合の性能について検討する。
広範な実験研究が行われている。
閾値は、7.29\%以上の情報の合計量が失われると、実験のすべてのケースでcnnベースの予測の性能が著しく低下することを示す。
エッジ表現の欠落の2つのシナリオを比較した。
1) 予測のための入力に不足したエッジが 'no edge' とマークされ、
2) 「未知」の特別なマーカーを用いて、欠落した端を示す。
実験の結果、最初の表現はcnnベースの予測者に誤解を招くことが明らかとなった。
関連論文リスト
- Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Comprehensive Analysis of Network Robustness Evaluation Based on Convolutional Neural Networks with Spatial Pyramid Pooling [4.366824280429597]
複雑なネットワークを理解し、最適化し、修復するための重要な側面である接続性の堅牢性は、伝統的にシミュレーションを通じて評価されてきた。
空間ピラミッドプールネットワーク(SPP-net)を用いた畳み込みニューラルネットワーク(CNN)モデルの設計により,これらの課題に対処する。
提案したCNNモデルは,全ての除去シナリオにおいて,攻撃曲線とロバストネスの両値の正確な評価を一貫して達成していることを示す。
論文 参考訳(メタデータ) (2023-08-10T09:54:22Z) - SPP-CNN: An Efficient Framework for Network Robustness Prediction [13.742495880357493]
本稿では,空間ピラミッドプール畳み込みニューラルネットワーク(SPP-CNN)のネットワークロバスト性予測のための効率的なフレームワークを開発する。
新しいフレームワークは、畳み込み層と完全に接続された層の間に空間ピラミッドプーリング層を設置し、CNNベースの予測アプローチにおける一般的なミスマッチ問題を克服する。
論文 参考訳(メタデータ) (2023-05-13T09:09:20Z) - A Learning Convolutional Neural Network Approach for Network Robustness
Prediction [13.742495880357493]
ネットワークの堅牢性は、様々な社会的・産業的ネットワークにとって再び悪意ある攻撃にとって重要である。
本稿では,畳み込みニューラルネットワーク(LFR-CNN)を用いた学習特徴表現に基づくネットワークロバスト性予測の改良手法を提案する。
このスキームでは、高次元のネットワークデータを低次元の表現に圧縮し、CNNに渡してロバストネス予測を行う。
論文 参考訳(メタデータ) (2022-03-20T13:45:55Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
CNNのホワイトボックス攻撃やブラックボックス攻撃に対する堅牢性について検討する。
結果は、蒸留されたCNN、エージェントベースの最新のprunedモデル、およびバイナライズニューラルネットワークのために示されています。
論文 参考訳(メタデータ) (2021-03-14T20:43:19Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Improving Video Instance Segmentation by Light-weight Temporal
Uncertainty Estimates [11.580916951856256]
本稿では,インスタンスセグメンテーションネットワークの不確かさをモデル化するための時間動的手法を提案する。
本稿では,偽陽性の検出と予測品質の推定に本手法を適用した。
提案手法は、容易に訓練されたニューラルネットワークとビデオシーケンス入力のみを必要とする。
論文 参考訳(メタデータ) (2020-12-14T13:39:05Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
既存のディープニューラルネットワークに基づくサルエントオブジェクト検出(SOD)手法は主に高いネットワーク精度の追求に重点を置いている。
これらの手法は、信頼不均衡問題として知られるネットワーク精度と予測信頼の間のギャップを見落としている。
我々は,不確実性を考慮した深部SODネットワークを導入し,深部SODネットワークの過信を防止するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2020-12-10T23:28:36Z) - Enabling certification of verification-agnostic networks via
memory-efficient semidefinite programming [97.40955121478716]
本稿では,ネットワークアクティベーションの総数にのみ線形なメモリを必要とする一階二重SDPアルゴリズムを提案する。
L-inf の精度は 1% から 88% ,6% から 40% に改善した。
また,変分オートエンコーダの復号器に対する2次安定性仕様の厳密な検証を行った。
論文 参考訳(メタデータ) (2020-10-22T12:32:29Z) - EagerNet: Early Predictions of Neural Networks for Computationally
Efficient Intrusion Detection [2.223733768286313]
最小限のリソースでネットワーク攻撃を検出するアーキテクチャを提案する。
アーキテクチャはバイナリまたはマルチクラスの分類問題に対処でき、ネットワークの精度を予測速度と交換できる。
論文 参考訳(メタデータ) (2020-07-27T11:31:37Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
本稿では,効率的な物体検出のためのバイナライズニューラルネットワークのBiDetを提案する。
我々のBiDetは、冗長除去による物体検出にバイナリニューラルネットワークの表現能力を完全に活用している。
我々の手法は、最先端のバイナリニューラルネットワークを大きなマージンで上回る。
論文 参考訳(メタデータ) (2020-03-09T08:16:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。