論文の概要: Credit card fraud detection - Classifier selection strategy
- arxiv url: http://arxiv.org/abs/2208.11900v1
- Date: Thu, 25 Aug 2022 07:13:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-26 14:00:56.953730
- Title: Credit card fraud detection - Classifier selection strategy
- Title(参考訳): クレジットカード不正検出 - 分類器選択戦略
- Authors: Gayan K. Kulatilleke
- Abstract要約: アノテーション付きトランザクションのサンプルを使用して、機械学習の分類アルゴリズムは不正を検出することを学習する。
不正データセットは多種多様で 矛盾した特徴を示します
特徴的不均衡な不正検出データセットに対するデータ駆動型分類器選択手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning has opened up new tools for financial fraud detection. Using
a sample of annotated transactions, a machine learning classification algorithm
learns to detect frauds. With growing credit card transaction volumes and
rising fraud percentages there is growing interest in finding appropriate
machine learning classifiers for detection. However, fraud data sets are
diverse and exhibit inconsistent characteristics. As a result, a model
effective on a given data set is not guaranteed to perform on another. Further,
the possibility of temporal drift in data patterns and characteristics over
time is high. Additionally, fraud data has massive and varying imbalance. In
this work, we evaluate sampling methods as a viable pre-processing mechanism to
handle imbalance and propose a data-driven classifier selection strategy for
characteristic highly imbalanced fraud detection data sets. The model derived
based on our selection strategy surpasses peer models, whilst working in more
realistic conditions, establishing the effectiveness of the strategy.
- Abstract(参考訳): 機械学習は金融詐欺検出のための新しいツールを公開した。
アノテーション付きトランザクションのサンプルを使用して、機械学習の分類アルゴリズムが不正検出を学習する。
クレジットカード取引量の増加と不正率の増加により、検出に適切な機械学習分類器を見つけることへの関心が高まっている。
しかし、不正データセットは多様であり、一貫性のない特徴を示す。
その結果、与えられたデータセットに有効なモデルが他のデータセットで実行されることが保証されない。
また、時間経過に伴うデータパターンや特性の時間的ドリフトの可能性も高い。
さらに、不正データには、大きくて異なる不均衡がある。
本研究では,サンプリング手法を,不均衡を扱うための実行可能な前処理機構として評価し,特徴的不均衡な不正検出データセットに対するデータ駆動型分類器選択戦略を提案する。
選択戦略に基づくモデルは、より現実的な条件下で作業しながら、ピアモデルを超え、戦略の有効性を確立する。
関連論文リスト
- Verification of Machine Unlearning is Fragile [48.71651033308842]
両タイプの検証戦略を回避できる2つの新しい非学習プロセスを導入する。
この研究は、機械学習検証の脆弱性と限界を強調し、機械学習の安全性に関するさらなる研究の道を開く。
論文 参考訳(メタデータ) (2024-08-01T21:37:10Z) - Explainable Fraud Detection with Deep Symbolic Classification [4.1205832766381985]
分類問題に対するDeep Symbolic Regressionフレームワークの拡張であるDeep Classificationを提案する。
関数は閉形式で簡潔な数学的表現であるため、モデルは1つの分類決定のレベルとモデルの決定過程の両方において本質的に説明可能である。
PaySimデータセットの評価は、最先端のモデルと競合する予測性能を示しながら、説明可能性の観点からそれらを上回っている。
論文 参考訳(メタデータ) (2023-12-01T13:50:55Z) - An engine to simulate insurance fraud network data [1.3812010983144802]
ネットワーク構造を持つ合成データを生成するシミュレーションマシンを開発した。
不正発生モデルにおいて、政策立案者及び当事者の総数、所望の不均衡レベル、および特徴(効果の大きさ)を特定できる。
シミュレーションエンジンは、研究者や実践者がいくつかの方法論的課題を検証し、保険詐欺検出モデルの(開発戦略)検証を可能にする。
論文 参考訳(メタデータ) (2023-08-21T13:14:00Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Credit Card Fraud Detection Using Enhanced Random Forest Classifier for
Imbalanced Data [0.8223798883838329]
本稿では,この問題を解決するためにランダムフォレスト(RF)アルゴリズムを実装した。
本研究ではクレジットカード取引のデータセットを用いた。
論文 参考訳(メタデータ) (2023-03-11T22:59:37Z) - Canary in a Coalmine: Better Membership Inference with Ensembled
Adversarial Queries [53.222218035435006]
私たちは、差別的で多様なクエリを最適化するために、逆ツールを使用します。
我々の改善は既存の方法よりもはるかに正確な会員推定を実現している。
論文 参考訳(メタデータ) (2022-10-19T17:46:50Z) - Empirical study of Machine Learning Classifier Evaluation Metrics
behavior in Massively Imbalanced and Noisy data [0.0]
我々は、実世界の不正検出データセットに典型的な人間のアノテーションエラーと極端な不均衡をモデル化するための理論的基盤を開発する。
我々は、F1スコアとg平均の組み合わせが、典型的な不均衡不正検出モデル分類における最良の評価指標であることを実証した。
論文 参考訳(メタデータ) (2022-08-25T07:30:31Z) - Challenges and Complexities in Machine Learning based Credit Card Fraud
Detection [0.0]
取引量、詐欺の独自性、詐欺師の巧妙さは詐欺を検知する上で大きな課題である。
機械学習、人工知能、ビッグデータの出現は、詐欺と戦うための新しいツールを公開した。
しかし,不正検出アルゴリズムの開発は,不正データの極めて不均衡な性質のため,困難で遅かった。
論文 参考訳(メタデータ) (2022-08-20T07:53:51Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Semi-supervised Long-tailed Recognition using Alternate Sampling [95.93760490301395]
ロングテール認識の主な課題は、データ分布の不均衡とテールクラスにおけるサンプル不足である。
半教師付き長尾認識という新しい認識設定を提案する。
2つのデータセットで、他の競合方法よりも大幅な精度向上を実証します。
論文 参考訳(メタデータ) (2021-05-01T00:43:38Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。