Time series clustering based on prediction accuracy of global
forecasting models
- URL: http://arxiv.org/abs/2305.00473v1
- Date: Sun, 30 Apr 2023 13:12:19 GMT
- Title: Time series clustering based on prediction accuracy of global
forecasting models
- Authors: \'Angel L\'opez Oriona, Pablo Montero Manso and Jos\'e Antonio Vilar
Fern\'andez
- Abstract summary: A novel method to perform model-based clustering of time series is proposed in this paper.
Unlike most techniques proposed in the literature, the method considers the predictive accuracy as the main element for constructing the clustering partition.
An extensive simulation study shows that our method outperforms several alternative techniques concerning both clustering effectiveness and predictive accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, a novel method to perform model-based clustering of time
series is proposed. The procedure relies on two iterative steps: (i) K global
forecasting models are fitted via pooling by considering the series pertaining
to each cluster and (ii) each series is assigned to the group associated with
the model producing the best forecasts according to a particular criterion.
Unlike most techniques proposed in the literature, the method considers the
predictive accuracy as the main element for constructing the clustering
partition, which contains groups jointly minimizing the overall forecasting
error. Thus, the approach leads to a new clustering paradigm where the quality
of the clustering solution is measured in terms of its predictive capability.
In addition, the procedure gives rise to an effective mechanism for selecting
the number of clusters in a time series database and can be used in combination
with any class of regression model. An extensive simulation study shows that
our method outperforms several alternative techniques concerning both
clustering effectiveness and predictive accuracy. The approach is also applied
to perform clustering in several datasets used as standard benchmarks in the
time series literature, obtaining great results.
Related papers
- Time Series Clustering with General State Space Models via Stochastic Variational Inference [0.0]
We propose a novel method of model-based time series clustering with mixtures of general state space models (MSSMs)
An advantage of the proposed method is that it enables the use of time series models appropriate to the specific time series.
Experiments on simulated datasets show that the proposed method is effective for clustering, parameter estimation, and estimating the number of clusters.
arXiv Detail & Related papers (2024-06-29T12:48:53Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - A parallelizable model-based approach for marginal and multivariate
clustering [0.0]
This paper develops a clustering method that takes advantage of the sturdiness of model-based clustering.
We tackle this issue by specifying a finite mixture model per margin that allows each margin to have a different number of clusters.
The proposed approach is computationally appealing as well as more tractable for moderate to high dimensions than a full' (joint) model-based clustering approach.
arXiv Detail & Related papers (2022-12-07T23:54:41Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
The paper proposes a family of communication efficient methods for distributed learning in heterogeneous environments.
One-shot approach, based on local computations at the users and a clustering based aggregation step at the server is shown to provide strong learning guarantees.
For strongly convex problems it is shown that, as long as the number of data points per user is above a threshold, the proposed approach achieves order-optimal mean-squared error rates in terms of the sample size.
arXiv Detail & Related papers (2022-09-22T09:04:10Z) - clusterBMA: Bayesian model averaging for clustering [1.2021605201770345]
We introduce clusterBMA, a method that enables weighted model averaging across results from unsupervised clustering algorithms.
We use clustering internal validation criteria to develop an approximation of the posterior model probability, used for weighting the results from each model.
In addition to outperforming other ensemble clustering methods on simulated data, clusterBMA offers unique features including probabilistic allocation to averaged clusters.
arXiv Detail & Related papers (2022-09-09T04:55:20Z) - Time Series Clustering with an EM algorithm for Mixtures of Linear
Gaussian State Space Models [0.0]
We propose a novel model-based time series clustering method with mixtures of linear Gaussian state space models.
The proposed method uses a new expectation-maximization algorithm for the mixture model to estimate the model parameters.
Experiments on a simulated dataset demonstrate the effectiveness of the method in clustering, parameter estimation, and model selection.
arXiv Detail & Related papers (2022-08-25T07:41:23Z) - Personalized Federated Learning via Convex Clustering [72.15857783681658]
We propose a family of algorithms for personalized federated learning with locally convex user costs.
The proposed framework is based on a generalization of convex clustering in which the differences between different users' models are penalized.
arXiv Detail & Related papers (2022-02-01T19:25:31Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
We study clustering methods for binary data, first defining aggregation criteria that measure the compactness of clusters.
Five new and original methods are introduced, using neighborhoods and population behavior optimization metaheuristics.
From a set of 16 data tables generated by a quasi-Monte Carlo experiment, a comparison is performed for one of the aggregations using L1 dissimilarity, with hierarchical clustering, and a version of k-means: partitioning around medoids or PAM.
arXiv Detail & Related papers (2020-01-06T23:33:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.