論文の概要: Bridging the View Disparity of Radar and Camera Features for Multi-modal
Fusion 3D Object Detection
- arxiv url: http://arxiv.org/abs/2208.12079v1
- Date: Thu, 25 Aug 2022 13:21:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-26 13:28:58.160394
- Title: Bridging the View Disparity of Radar and Camera Features for Multi-modal
Fusion 3D Object Detection
- Title(参考訳): マルチモーダル核融合3次元物体検出のためのレーダーとカメラの視差の橋渡し
- Authors: Taohua Zhou, Yining Shi, Junjie Chen, Kun Jiang, Mengmeng Yang, Diange
Yang
- Abstract要約: 本稿では3次元物体検出にミリ波レーダとカメラセンサ融合を用いる方法について述べる。
より優れた特徴表現のための鳥眼ビュー(BEV)における特徴レベル融合を実現する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 6.959556180268547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Environmental perception with multi-modal fusion of radar and camera is
crucial in autonomous driving to increase the accuracy, completeness, and
robustness. This paper focuses on how to utilize millimeter-wave (MMW) radar
and camera sensor fusion for 3D object detection. A novel method which realizes
the feature-level fusion under bird-eye view (BEV) for a better feature
representation is proposed. Firstly, radar features are augmented with temporal
accumulation and sent to a temporal-spatial encoder for radar feature
extraction. Meanwhile, multi-scale image 2D features which adapt to various
spatial scales are obtained by image backbone and neck model. Then, image
features are transformed to BEV with the designed view transformer. In
addition, this work fuses the multi-modal features with a two-stage fusion
model called point fusion and ROI fusion, respectively. Finally, a detection
head regresses objects category and 3D locations. Experimental results
demonstrate that the proposed method realizes the state-of-the-art performance
under the most important detection metrics, mean average precision (mAP) and
nuScenes detection score (NDS) on the challenging nuScenes dataset.
- Abstract(参考訳): レーダとカメラのマルチモーダル融合による環境認識は、精度、完全性、堅牢性を高めるために自律運転において不可欠である。
本稿では3次元物体検出にミリ波レーダとカメラセンサ融合を用いる方法について述べる。
より優れた特徴表現のための鳥眼ビュー(BEV)における特徴レベル融合を実現する新しい手法を提案する。
まず、レーダの特徴を時間的蓄積で拡張し、レーダ特徴抽出のために時間空間エンコーダに送信する。
一方、画像バックボーンとネックモデルにより、様々な空間スケールに対応するマルチスケール画像2D特徴を得る。
そして、デザインされたビュー変換器で画像特徴をBEVに変換する。
さらに、この研究は、点融合とROI融合と呼ばれる2段階の融合モデルで多モード特徴を融合させる。
最後に、検出ヘッドはオブジェクトカテゴリと3Dロケーションを回帰する。
実験により,提案手法は,最も重要な検出基準である平均精度(mAP)とNDS(nuScenes detection score)に基づいて,挑戦的なnuScenesデータセット上での最先端性能を実現することを示した。
関連論文リスト
- CRT-Fusion: Camera, Radar, Temporal Fusion Using Motion Information for 3D Object Detection [9.509625131289429]
本稿では,レーダカメラ融合に時間情報を統合する新しいフレームワークであるCRT-Fusionを紹介する。
CRT-Fusionはレーダーカメラによる3Dオブジェクト検出のための最先端性能を実現する。
論文 参考訳(メタデータ) (2024-11-05T11:25:19Z) - Progressive Multi-Modal Fusion for Robust 3D Object Detection [12.048303829428452]
既存の方法は、バードアイビュー(BEV)とパースペクティブビュー(PV)の両方のモードから特徴を投影することで、単一ビューでセンサフュージョンを実行する。
本稿では,中間クエリレベルとオブジェクトクエリレベルの両方で,BEVとPVの両方の機能を組み合わせたプログレッシブフュージョンフレームワークProFusion3Dを提案する。
我々のアーキテクチャは、局所的およびグローバルな特徴を融合させ、3次元オブジェクト検出の堅牢性を高める。
論文 参考訳(メタデータ) (2024-10-09T22:57:47Z) - RCBEVDet++: Toward High-accuracy Radar-Camera Fusion 3D Perception Network [34.45694077040797]
本稿では、BEEVDetと呼ばれるレーダーカメラ融合3Dオブジェクト検出フレームワークを提案する。
RadarBEVNetは、スパースレーダーポイントを高密度の鳥の目視特徴に符号化する。
提案手法は,3次元オブジェクト検出,BEVセマンティックセグメンテーション,および3次元マルチオブジェクト追跡タスクにおいて,最先端のレーダカメラ融合を実現する。
論文 参考訳(メタデータ) (2024-09-08T05:14:27Z) - VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
モノクル3Dオブジェクト検出は、自律運転やロボティクスなど、さまざまなアプリケーションにおいて重要な役割を担っている。
本稿では,VFMM3Dを提案する。VFMM3Dは,ビジョンファウンデーションモデル(VFM)の機能を利用して,単一ビュー画像を正確にLiDARポイントクラウド表現に変換する,革新的なフレームワークである。
論文 参考訳(メタデータ) (2024-04-15T03:12:12Z) - MVFusion: Multi-View 3D Object Detection with Semantic-aligned Radar and
Camera Fusion [6.639648061168067]
マルチビューレーダーカメラで融合した3Dオブジェクト検出は、より遠くの検知範囲と自律運転に有用な機能を提供する。
現在のレーダーとカメラの融合方式は、レーダー情報をカメラデータで融合するための種類の設計を提供する。
セマンティック・アライメント・レーダ機能を実現するための新しいマルチビューレーダカメラフュージョン法であるMVFusionを提案する。
論文 参考訳(メタデータ) (2023-02-21T08:25:50Z) - DETR4D: Direct Multi-View 3D Object Detection with Sparse Attention [50.11672196146829]
サラウンドビュー画像を用いた3次元物体検出は、自動運転にとって必須の課題である。
マルチビュー画像における3次元オブジェクト検出のためのスパースアテンションと直接特徴クエリを探索するトランスフォーマーベースのフレームワークであるDETR4Dを提案する。
論文 参考訳(メタデータ) (2022-12-15T14:18:47Z) - DeepFusion: A Robust and Modular 3D Object Detector for Lidars, Cameras
and Radars [2.2166853714891057]
本研究では,ライダー,カメラ,レーダーを異なる組み合わせで融合して3次元物体検出を行うモジュール型マルチモーダルアーキテクチャを提案する。
特殊特徴抽出器は各モードの利点を生かし、容易に交換でき、アプローチをシンプルかつ柔軟にする。
Lidar-camera, lidar-camera-radar, camera-radar fusion の実験結果から, 融合法の柔軟性と有効性が確認された。
論文 参考訳(メタデータ) (2022-09-26T14:33:30Z) - MSMDFusion: Fusing LiDAR and Camera at Multiple Scales with Multi-Depth
Seeds for 3D Object Detection [89.26380781863665]
自律運転システムにおける高精度で信頼性の高い3次元物体検出を実現するためには,LiDARとカメラ情報の融合が不可欠である。
近年のアプローチでは、2次元カメラ画像の3次元空間への昇華点によるカメラ特徴のセマンティックな密度の探索が試みられている。
マルチグラニュラリティLiDARとカメラ機能とのマルチスケールなプログレッシブインタラクションに焦点を当てた,新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-07T12:29:29Z) - DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection [83.18142309597984]
ライダーとカメラは、自動運転における3D検出を補完する情報を提供する重要なセンサーである。
我々はDeepFusionという名前の汎用マルチモーダル3D検出モデル群を開発した。
論文 参考訳(メタデータ) (2022-03-15T18:46:06Z) - EPNet++: Cascade Bi-directional Fusion for Multi-Modal 3D Object
Detection [56.03081616213012]
本稿では,新しいCasscade Bi-directional Fusion(CB-Fusion)モジュールを導入することで,マルチモーダル3Dオブジェクト検出のためのEPNet++を提案する。
提案したCB-Fusionモジュールは、カスケード双方向相互作用融合方式で画像特徴と点特徴の豊富な意味情報を高める。
KITTI、JRDB、SUN-RGBDデータセットの実験結果は、最先端の手法よりもEPNet++の方が優れていることを示している。
論文 参考訳(メタデータ) (2021-12-21T10:48:34Z) - Cross-Modality 3D Object Detection [63.29935886648709]
本稿では,3次元物体検出のための新しい2段階多モード融合ネットワークを提案する。
アーキテクチャ全体が2段階の融合を促進する。
KITTIデータセットを用いた実験により,提案したマルチステージ融合により,ネットワークがより良い表現を学習できることが示唆された。
論文 参考訳(メタデータ) (2020-08-16T11:01:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。