論文の概要: Training a T5 Using Lab-sized Resources
- arxiv url: http://arxiv.org/abs/2208.12097v1
- Date: Thu, 25 Aug 2022 13:55:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-26 13:24:52.363241
- Title: Training a T5 Using Lab-sized Resources
- Title(参考訳): ラボサイズの資源を用いたt5訓練
- Authors: Manuel R. Ciosici, Leon Derczynski
- Abstract要約: 大きなデータセットで大規模なニューラルネットワークモデルをトレーニングするのは、リソースと時間集約的です。
本稿では, 研究機関が持つであろう資源を用いて, 大規模言語モデルを訓練し, (b) 妥当な時間で学習するための様々な手法を提案する。
- 参考スコア(独自算出の注目度): 10.825463654188418
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training large neural language models on large datasets is resource- and
time-intensive. These requirements create a barrier to entry, where those with
fewer resources cannot build competitive models. This paper presents various
techniques for making it possible to (a) train a large language model using
resources that a modest research lab might have, and (b) train it in a
reasonable amount of time. We provide concrete recommendations for
practitioners, which we illustrate with a case study: a T5 model for Danish,
the first for this language.
- Abstract(参考訳): 大きなデータセットで大規模なニューラルネットワークモデルをトレーニングするのは、リソースと時間を要する。
これらの要件は、リソースが少ない人は競合モデルを構築することができないため、参入への障壁を生み出します。
本稿では,その実現に向けて様々な手法を提案する。
(a)研究機関が持つであろう資源を用いて、大規模な言語モデルを訓練し、
(b)適度な時間内に訓練すること。
デンマーク語のためのT5モデルとして,この言語を最初に用いたケーススタディを,実践者に対して具体的なレコメンデーションとして提示する。
関連論文リスト
- A multilingual training strategy for low resource Text to Speech [5.109810774427171]
ソーシャルメディアからのデータを、小さなTSデータセット構築に利用することができるか、また、言語間移動学習がこの種のデータに有効かどうかを検討する。
そこで本稿では,対象とする低リソース言語に対するTSモデルをトレーニングするために,外国語からのデータをどのように選択し,プールするかを検討する。
以上の結果から,多言語事前学習は単言語事前学習よりも,生成した音声の明瞭さと自然性を高めることが示唆された。
論文 参考訳(メタデータ) (2024-09-02T12:53:01Z) - Tele-FLM Technical Report [96.19923831660266]
52Bのオープンソース多言語大言語モデルであるTele-FLM(別名FLM-2)を紹介する。
安定的で効率的な事前訓練のパラダイムと、事実判断能力の強化が特徴である。
これは、Llama2-70BやDeepSeek-67Bのようなより大きな事前学習FLOPを含む強力なオープンソースモデルに匹敵する。
論文 参考訳(メタデータ) (2024-04-25T14:34:47Z) - Multilingual E5 Text Embeddings: A Technical Report [63.503320030117145]
異なるサイズの3つの埋め込みモデルを提供し、推論効率と埋め込み品質のバランスを提供する。
そこで我々は,新しい命令調整型埋め込みモデルを導入し,その性能は類似サイズの最先端の英語のみのモデルと同等である。
論文 参考訳(メタデータ) (2024-02-08T13:47:50Z) - Large-scale Multi-Modal Pre-trained Models: A Comprehensive Survey [66.18478838828231]
マルチモーダルな事前訓練型大型モデルは近年ますます注目を集めている。
本稿では, 自然言語処理, コンピュータビジョン, 音声処理における従来の深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・
次に,マルチモーダル・プレトレーニング・モデル(MM-PTM)のタスク定義,課題,メリットを紹介し,データ,目的,ネットワーク,知識強化による事前トレーニングに着目して,MM-PTMについて議論する。
論文 参考訳(メタデータ) (2023-02-20T15:34:03Z) - Improving Cross-lingual Information Retrieval on Low-Resource Languages
via Optimal Transport Distillation [21.057178077747754]
本稿では,低リソースな言語間情報検索のためのOPTICAL: Optimal Transport 蒸留法を提案する。
クエリドキュメントマッチングの知識から言語間知識を分離することにより、OPTICALは蒸留訓練のためのbitextデータのみを必要とする。
実験結果から,OPTICALは最小限のトレーニングデータにより,低リソース言語上での強いベースラインを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-01-29T22:30:36Z) - BERTIN: Efficient Pre-Training of a Spanish Language Model using
Perplexity Sampling [0.0]
Common Crawlは、この事前学習サブ最適化を実現するのに十分なノイズを含むかもしれない。
約半分のステップで言語モデルの事前学習を可能にする新しいデータ中心手法を提案する。
私たちの仕事はトランスフォーマーの汎用性の証明であり、小さなチームが限られた予算でモデルをトレーニングするための道を開くものです。
論文 参考訳(メタデータ) (2022-07-14T10:48:42Z) - Towards Best Practices for Training Multilingual Dense Retrieval Models [54.91016739123398]
我々は,このような設計を用いて,多種多様言語における単言語検索の課題に焦点をあてる。
本研究は多言語高密度検索モデルのトレーニングのための「ベストプラクティス」ガイドとして組織されている。
論文 参考訳(メタデータ) (2022-04-05T17:12:53Z) - bert2BERT: Towards Reusable Pretrained Language Models [51.078081486422896]
本稿では,既存のより小さな事前学習モデルの知識を大規模モデルに効果的に伝達できるbert2BERTを提案する。
bert2BERTは、ほぼ半分の大きさのモデルを再利用することで、BERT_BASEとGPT_BASEの事前トレーニングに約45%と47%の計算コストを節約する。
論文 参考訳(メタデータ) (2021-10-14T04:05:25Z) - Scaling End-to-End Models for Large-Scale Multilingual ASR [44.89961662796597]
多くの言語ファミリーでASRモデルを構築することは、大きな言語バリエーションと非常にバランスの取れないデータのために、マルチタスク学習の難しい問題です。
言語毎のデータ量は7.7Kから54.7K時間まで様々である。
論文 参考訳(メタデータ) (2021-04-30T08:24:11Z) - Beyond English-Centric Multilingual Machine Translation [74.21727842163068]
我々は真の多言語多言語翻訳モデルを作成し、100言語のいずれかのペア間で直接翻訳できる。
大規模なマイニングによって生成された教師付きデータで、数千の言語方向をカバーするトレーニングデータセットを構築し、オープンソースにしています。
WMTのベストシングルシステムに競争力を持たせながら、非英語の方向を直接翻訳する場合、非英語モデルに焦点をあてると10 BLEU以上のゲインが得られる。
論文 参考訳(メタデータ) (2020-10-21T17:01:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。